Macrophage activation contributes to diabetic retinopathy

Nentwich MM, Ulbig MW (2015) Diabetic retinopathy - ocular complications of diabetes mellitus. World J Diabetes 6:489–499. https://doi.org/10.4239/wjd.v6.i3.489

Article  PubMed  PubMed Central  Google Scholar 

Rajesh A, Droho S, Lavine JA (2022) Macrophages in close proximity to the vitreoretinal interface are potential biomarkers of inflammation during retinal vascular disease. J Neuroinflammation 19:203. https://doi.org/10.1186/s12974-022-02562-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bressler NM, Beaulieu WT, Glassman AR, Blinder KJ, Bressler SB, Jampol LM, Melia M, Wells JA (2018) Persistent macular thickening following intravitreous Aflibercept, Bevacizumab, or Ranibizumab for central-involved diabetic macular edema with vision impairment: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol 136:257–269. https://doi.org/10.1001/jamaophthalmol.2017.6565

Article  PubMed  PubMed Central  Google Scholar 

Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, Edwards AR, Ferris FL, Friedman SM, Glassman AR, Miller KM et al (2010) Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 117:1064–1077. https://doi.org/10.1016/j.ophtha.2010.02.031

Article  PubMed  Google Scholar 

Nian S, Lo ACY, Mi Y, Ren K, Yang D (2021) Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. Eye Vis (Lond) 8:15. https://doi.org/10.1186/s40662-021-00239-1

Article  PubMed  Google Scholar 

Ibrahim AS, El-Remessy AB, Matragoon S, Zhang W, Patel Y, Khan S, Al-Gayyar MM, El-Shishtawy MM, Liou GI (2011) Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes. Diabetes 60:1122–1133. https://doi.org/10.2337/db10-1160

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gardner TW, Davila JR (2017) The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 255:1–6. https://doi.org/10.1007/s00417-016-3548-y

Article  PubMed  Google Scholar 

Zong H, Ward M, Stitt AW (2011) AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep 11:244–252. https://doi.org/10.1007/s11892-011-0198-7

Article  PubMed  Google Scholar 

Rübsam A, Parikh S, Fort PE (2018) Role of inflammation in diabetic retinopathy. Int J Mol Sci 19:942. https://doi.org/10.3390/ijms19040942

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abcouwer SF, Gardner TW (2014) Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci 1311:174–190. https://doi.org/10.1111/nyas.12412

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan WW, Lin F, Fort PE (2021) The innate immune system in diabetic retinopathy. Prog Retin Eye Res 84:100940. https://doi.org/10.1016/j.preteyeres.2021.100940

Article  CAS  PubMed  PubMed Central  Google Scholar 

Obasanmi G, Lois N, Armstrong D, Hombrebueno J, Lynch A, Chen M, Xu H (2023) Peripheral blood mononuclear cells from patients with type 1 diabetes and diabetic retinopathy produce higher levels of IL-17A, IL-10 and IL-6 and lower levels of IFN-γ-a pilot study. Cells 12:467. https://doi.org/10.3390/cells12030467

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kovoor E, Chauhan S, Hajrasouliha A (2022) Role of inflammatory cells in pathophysiology and management of diabetic retinopathy. Surv Ophthalmol 67:1563–1573. https://doi.org/10.1016/j.survophthal.2022.07.008

Article  PubMed  Google Scholar 

Elbeyli A, Kurtul B, Ozcan S, Ozarslan Ozcan D (2022) The diagnostic value of systemic immune-inflammation index in diabetic macular oedema. Clin Exp Optom 105:831–835. https://doi.org/10.1080/08164622.2021.1994337

Article  PubMed  Google Scholar 

Huang J, Zhou Q (2022) Identification of the relationship between hub genes and immune cell infiltration in vascular endothelial cells of proliferative diabetic retinopathy using bioinformatics methods 2022:7231046. https://doi.org/10.1155/2022/7231046

Article  CAS  Google Scholar 

Zeng HY, Green WR, Tso MO (2008) Microglial activation in human diabetic retinopathy. Arch Ophthalmol 126:227–232. https://doi.org/10.1001/archophthalmol.2007.65

Article  PubMed  Google Scholar 

Blot G, Karadayi R, Przegralek L, Sartoris TM, Charles-Messance H, Augustin S, Negrier P, Blond F, Muñiz-Ruvalcaba FP, Rivera-de la Parra D et al (2023) Perilipin 2-positive mononuclear phagocytes accumulate in the diabetic retina and promote PPARγ-dependent vasodegeneration. J Clin Invest 133:e161348. https://doi.org/10.1172/jci161348

Article  PubMed  PubMed Central  Google Scholar 

Mills SA, Jobling AI, Dixon MA, Bui BV, Vessey KA, Phipps JA, Greferath U, Venables G, Wong VHY, Wong CHY et al (2021) Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy. Proc Natl Acad Sci USA 118:e2112561118. https://doi.org/10.1073/pnas.2112561118

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen M, Luo C, Zhao J, Devarajan G, Xu H (2019) Immune regulation in the aging retina. Prog Retin Eye Res 69:159–172. https://doi.org/10.1016/j.preteyeres.2018.10.003

Article  CAS  PubMed  Google Scholar 

Altmann C, Schmidt MHH (2018) The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration. Int J Mol Sci 19:110. https://doi.org/10.3390/ijms19010110

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ong JX, Nesper PL, Fawzi AA, Wang JM, Lavine JA (2021) Macrophage-like cell density is increased in proliferative diabetic retinopathy characterized by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 62:2. https://doi.org/10.1167/iovs.62.10.2

Article  PubMed  PubMed Central  Google Scholar 

Wang X, Zhao L, Zhang J, Fariss RN, Ma W, Kretschmer F, Wang M, Qian HH, Badea TC, Diamond JS et al (2016) Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J Neurosci 36:2827–2842. https://doi.org/10.1523/jneurosci.3575-15.2016

Article  PubMed  PubMed Central  Google Scholar 

Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10.1126/science.1194637

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90. https://doi.org/10.1126/science.1219179

Article  CAS  PubMed  Google Scholar 

Wolf J, Boneva S, Rosmus DD, Agostini H, Schlunck G, Wieghofer P, Schlecht A, Lange C (2022) In-depth molecular profiling specifies human retinal microglia identity. Front Immunol 13:863158. https://doi.org/10.3389/fimmu.2022.863158

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schafer ST, Mansour AA, Schlachetzki JCM, Pena M, Ghassemzadeh S, Mitchell L, Mar A, Quang D, Stumpf S, Ortiz IS et al (2023) An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 186:2111–2126. https://doi.org/10.1016/j.cell.2023.04.022

Article  CAS  PubMed  Google Scholar 

Chen L, Yang P, Kijlstra A (2002) Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 10:27–39. https://doi.org/10.1076/ocii.10.1.27.10328

Article  PubMed  Google Scholar 

Singaravelu J, Zhao L, Fariss RN, Nork TM, Wong WT (2017) Microglia in the primate macula: specializations in microglial distribution and morphology with retinal position and with aging. Brain Struct Funct 222:2759–2771. https://doi.org/10.1007/s00429-017-1370-x

Article  PubMed  PubMed Central  Google Scholar 

Li L, Eter N, Heiduschka P (2018) The microglia in healthy and diseased retina. Exp Eye Res 136:116–130. https://doi.org/10.1016/j.exer.2015.04.020

Article  CAS  Google Scholar 

Silverman SM, Wong WT (2018) Microglia in the retina: roles in development, maturity, and disease. Annu Rev Vis Sci 4:45–77. https://doi.org/10.1146/annurev-vision-091517-034425

Article  PubMed  Google Scholar 

Lukowski SW, Lo CY, Sharov AA, Nguyen Q, Fang L, Hung SS, Zhu L, Zhang T, Grünert U, Nguyen T (2019) A single-cell transcriptome atlas of the adult human retina. Embo j 38:100811. https://doi.org/10.15252/embj.2018100811

Article  CAS  Google Scholar 

Lee JE, Liang KJ, Fariss RN, Wong WT (2008) Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol Vis Sci 49:4169–4176. https://doi.org/10.1167/iovs.08-2076

Article  PubMed  Google Scholar 

Zhang Y, Zhao L, Wang X, Ma W, Lazere A, Qian HH, Zhang J, Abu-Asab M, Fariss RN, Roger JE et al (2018) Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Sci Adv 4:eaap8492. https://doi.org/10.1126/sciadv.aap8492

留言 (0)

沒有登入
gif