Systematic and quantitative analysis of stop codon readthrough in Rett syndrome nonsense mutations

Laurvick CL, de Klerk N, Bower C, Christodoulou J, Ravine D, Ellaway C, Williamson S, Leonard H (2006) Rett syndrome in Australia: a review of the epidemiology. J Pediatr 148:347–352. https://doi.org/10.1016/j.jpeds.2005.10.037

Article  PubMed  Google Scholar 

Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188. https://doi.org/10.1038/13810

Article  CAS  PubMed  Google Scholar 

Haase FD, Coorey B, Riley L, Cantrill LC, Tam PPL, Gold WA (2021) Pre-clinical investigation of Rett syndrome using human stem cell-based disease models. Front Neurosci 15:698812. https://doi.org/10.3389/fnins.2021.698812

Article  PubMed  PubMed Central  Google Scholar 

Tarquinio DC, Hou W, Neul JL, Kaufmann WE, Glaze DG, Motil KJ, Skinner SA, Lee H-S, Percy AK (2015) The changing face of survival in Rett syndrome and MECP2-related disorders. Pediatr Neurol 53:402–411. https://doi.org/10.1016/j.pediatrneurol.2015.06.003

Article  PubMed  PubMed Central  Google Scholar 

Cuddapah VA, Pillai RB, Shekar KV, Lane JB, Motil KJ, Skinner SA, Tarquinio DC, Glaze DG, McGwin G, Kaufmann WE et al (2014) Methyl-CpG-binding protein 2 (MEPC2) mutation type is associated with disease severity in Rett Syndrome. J Med Genet 51:152–158. https://doi.org/10.1136/jmedgenet-2013-102113

Article  CAS  PubMed  Google Scholar 

Krishnaraj R, Ho G, Christodoulou J (2017) RettBASE: Rett syndrome database update. Hum Mutat 38:922–931. https://doi.org/10.1002/humu.23263

Article  PubMed  Google Scholar 

Nan X, Tate P, Li E, Bird A (1996) DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol 16:414–421. https://doi.org/10.1128/MCB.16.1.414

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kifayathullah LA, Arunachalam JP, Bodda C, Agbemenyah HY, Laccone FA, Mannan AU (2010) MeCP2270 mutant protein is expressed in astrocytes as well as in neurons and localizes in the nucleus. CGR 129:290–297. https://doi.org/10.1159/000315906

Article  CAS  Google Scholar 

Kriaucionis S, Bird A (2004) The major form of MeCP2 has a novel N-terminus generated by alternative splicing. Nucleic Acids Res 32:1818–1823. https://doi.org/10.1093/nar/gkh349

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mnatzakanian GN, Lohi H, Munteanu I, Alfred SE, Yamada T, MacLeod PJM, Jones JR, Scherer SW, Schanen NC, Friez MJ et al (2004) A previously unidentified MECP2 open reading frame defines a new protein isoform relevant to Rett syndrome. Nat Genet 36:339–341. https://doi.org/10.1038/ng1327

Article  CAS  PubMed  Google Scholar 

Martínez de Paz A, Khajavi L, Martin H, Claveria-Gimeno R, Tom Dieck S, Cheema MS, Sanchez-Mut JV, Moksa MM, Carles A, Brodie NI et al (2019) MeCP2-E1 isoform is a dynamically expressed, weakly DNA-bound protein with different protein and DNA interactions compared to MeCP2-E2. Epigenetics Chromatin 12:63. https://doi.org/10.1186/s13072-019-0298-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharifi O, Yasui DH (2021) The Molecular Functions of MeCP2 in Rett Syndrome Pathology. Front Genet 12:624290. https://doi.org/10.3389/fgene.2021.624290

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neul JL, Fang P, Barrish J, Lane J, Caeg E, Smith EO, Zoghbi H, Percy A, Glaze DG (2008) Specific mutations in methyl-CpG-binding protein 2 confer different deverity in Rett syndrome. Neurology 70:1313–1321. https://doi.org/10.1212/01.wnl.0000291011.54508.aa

Article  CAS  PubMed  Google Scholar 

Percy AK, Lane JB, Childers J, Skinner S, Annese F, Barrish J, Caeg E, Glaze DG, MacLeod P (2007) Rett syndrome: North American database. J Child Neurol 22:1338–1341. https://doi.org/10.1177/0883073807308715

Article  PubMed  Google Scholar 

Giacometti E, Luikenhuis S, Beard C, Jaenisch R (2007) Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2. Proc Natl Acad Sci USA 104:1931–1936. https://doi.org/10.1073/pnas.0610593104

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–1147. https://doi.org/10.1126/science.1138389

Article  ADS  PubMed  PubMed Central  Google Scholar 

Merritt JK, Collins BE, Erickson KR, Dong H, Neul JL (2020) Pharmacological read-through of R294X MeCP2 in a novel mouse model of Rett syndrome. Hum Mol Genet 29:2461–2470. https://doi.org/10.1093/hmg/ddaa102

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glaze DG, Neul JL, Kaufmann WE, Berry-Kravis E, Condon S, Stoms G, Oosterholt S, Della Pasqua O, Glass L, Jones NE et al (2019) Double-blind, randomized, placebo-controlled study of trofinetide in pediatric Rett syndrome. Neurology 92:e1912–e1925. https://doi.org/10.1212/WNL.0000000000007316

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neul JL, Percy AK, Benke TA, Berry-Kravis EM, Glaze DG, Peters SU, Jones NE, Youakim JM (2022) Design and outcome measures of LAVENDER, a phase 3 study of trofinetide for Rett syndrome. Contemp Clin Trials 114:106704. https://doi.org/10.1016/j.cct.2022.106704

Article  PubMed  Google Scholar 

Prokhorova I, Altman RB, Djumagulov M, Shrestha JP, Urzhumtsev A, Ferguson A, Chang C-WT, Yusupov M, Blanchard SC, Yusupova G (2017) Aminoglycoside interactions and impacts on the eukaryotic ribosome. Proc Natl Acad Sci USA 114:E10899–E10908. https://doi.org/10.1073/pnas.1715501114

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Ogle JM, Brodersen DE, Clemons WM, Tarry MJ, Carter AP, Ramakrishnan V (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897–902. https://doi.org/10.1126/science.1060612

Article  ADS  CAS  PubMed  Google Scholar 

Kerem E, Konstan MW, De Boeck K, Accurso FJ, Sermet-Gaudelus I, Wilschanski M, Elborn JS, Melotti P, Bronsveld I, Fajac I et al (2014) Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med 2:539–547. https://doi.org/10.1016/S2213-2600(14)70100-6

Article  CAS  Google Scholar 

Ebrahimi-Fakhari D, Dillmann U, Flotats-Bastardas M, Poryo M, Abdul-Khaliq H, Shamdeen MG, Mischo B, Zemlin M, Meyer S (2018) Off-label use of ataluren in four non-ambulatory patients with nonsense mutation Duchenne muscular dystrophy: effects on cardiac and pulmonary function and muscle strength. Front Pediatr 6:316. https://doi.org/10.3389/fped.2018.00316

Article  PubMed  PubMed Central  Google Scholar 

Banning A, Schiff M, Tikkanen R (2018) Amlexanox provides a potential therapy for nonsense mutations in the lysosomal storage disorder aspartylglucosaminuria. Biochim et Biophys Acta (BBA) - Mol Basis Dis 1864:668–675. https://doi.org/10.1016/j.bbadis.2017.12.014

Article  CAS  Google Scholar 

Schilff M, Sargsyan Y, Hofhuis J, Thoms S (2021) Stop codon context-specific induction of translational readthrough. Biomolecules 11:1006. https://doi.org/10.3390/biom11071006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schueren F, Lingner T, George R, Hofhuis J, Dickel C, Gärtner J, Thoms S (2014) Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals. eLife 3:e03640. https://doi.org/10.7554/eLife.03640

Article  PubMed  PubMed Central  Google Scholar 

Hofhuis J, Schueren F, Nötzel C, Lingner T, Gärtner J, Jahn O, Thoms S (2016) The functional readthroughextension of malate dehydrogenase reveals a modification of the genetic code. Open Biol 6:160246. https://doi.org/10.1098/rsob.160246

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cassan M, Rousset JP (2001) UAG readthrough in mammalian cells: effect of upstream and downstream stop codon contexts reveal different signals. BMC Mol Biol 2:3. https://doi.org/10.1186/1471-2199-2-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pranke IM, Varilh J, Hatton A, Faucon C, Girodon E, Dreano E, Chevalier B, Karri S, Reix P, Durieu I et al (2022) The U UGA C sequence provides a favorable context to ELX-02 induced CFTR readthrough. J Cyst Fibros S1569–1993(22):01392–01393. https://doi.org/10.1016/j.jcf.2022.10.010

Article  CAS  Google Scholar 

Stiebler AC, Freitag J, Schink KO, Stehlik T, Tillmann BAM, Ast J, Bölker M (2014) Ribosomal readthrough at a short UGA stop codon context triggers dual localization of metabolic enzymes in fungi and animals. PLoS Genet 10:e1004685. https://doi.org/10.1371/journal.pgen.1004685

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brendel C, Klahold E, Gärtner J, Huppke P (2009) Suppression of nonsense mutations in Rett syndrome by aminoglycoside antibiotics. Pediatr Res 65:520–523. https://doi.org/10.1203/PDR.0b013e31819d9ebc

Article 

留言 (0)

沒有登入
gif