Air Pollution and Osteoporosis

Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jönsson B. Mortality after osteoporotic fractures. Osteoporos Int. 2004;15:38–42.

Article  CAS  PubMed  Google Scholar 

Riggs BL, Khosla S, Melton LJ III. Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev. 2002;23:279–302.

Article  CAS  PubMed  Google Scholar 

Parfitt AM. The cellular basis of bone remodeling: the quantum concept reexamined in light of recent advances in the cell biology of bone. Calcif Tissue Int. 1984;36:S37–45.

Article  PubMed  Google Scholar 

McNamara LM. Perspective on post-menopausal osteoporosis: establishing an interdisciplinary understanding of the sequence of events from the molecular level to whole bone fractures. J R Soc Interface. 2010;7:353–72.

Article  CAS  PubMed  Google Scholar 

Eriksen EF, Hodgson SF, Eastell R, RIGGS BL, Cedel SL, O’Fallon WM. Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res 1990, 5, 311–319.

Alexandre C, Vico L. Pathophysiology of bone loss in disuse osteoporosis. Jt Bone Spine. 2011;78:572–6. https://doi.org/10.1016/j.jbspin.2011.04.007.

Article  CAS  Google Scholar 

Verbruggen SW, McNamara LM. Chapter 6 - Bone mechanobiology in health and disease. In: Verbruggen WS, editor. Mechanobiology in health and disease. Academic Press; 2018. pp. 157–214. https://doi.org/10.1016/B978-0-12-812952-4.00006-4.

Hoey DA, Tormey S, Ramcharan S, O’Brien FJ, Jacobs CR. Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. Stem Cells. 2012;30:2561–70. https://doi.org/10.1002/stem.1235.

Article  CAS  PubMed  Google Scholar 

Kelly DJ, Jacobs CR. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res Part C Embryo Today Rev. 2010;90:75–85.

Article  CAS  Google Scholar 

Sutton MM, Duffy MP, Verbruggen SW, Jacobs CR. Osteoclastogenesis requires primary cilia disassembly and can be inhibited by promoting primary cilia formation pharmacologically. Cells Tissues Organs. 2024;213:235–44.

Article  CAS  PubMed  Google Scholar 

Vaughan TJ, Mullen CA, Verbruggen SW, McNamara LM. Bone cell mechanosensation of fluid flow stimulation: a fluid–structure interaction model characterising the role integrin attachments and primary cilia. Biomech Model Mechanobiol. 2015;14:703–18. https://doi.org/10.1007/s10237-014-0631-3.

Article  CAS  PubMed  Google Scholar 

Hoey DA, Kelly DJ, Jacobs CR. A role for the primary cilium in paracrine signaling between mechanically stimulated osteocytes and mesenchymal stem cells. Biochem Biophys Res Commun. 2011;412:182–7. https://doi.org/10.1016/j.bbrc.2011.07.072.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Malone AMD, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A. 2007;104:13325–30. https://doi.org/10.1073/pnas.0700636104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schaffler MB, Cheung W-Y, Majeska R, Kennedy O. Osteocytes: Master orchestrators of bone. Calcif Tissue Int. 2014;94:5–24. https://doi.org/10.1007/s00223-013-9790-y.

Article  CAS  PubMed  Google Scholar 

Verbruggen SW, Vaughan TJ, McNamara LM. Mechanisms of osteocyte stimulation in osteoporosis. J Mech Behav Biomed Mater. 2016. https://doi.org/10.1016/j.jmbbm.2016.05.004.

Article  PubMed  Google Scholar 

Verbruggen SW, Mc Garrigle MJ, Haugh MG, Voisin MC, McNamara LM. Altered mechanical environment of bone cells in an animal model of short- and long-term osteoporosis. Biophys J. 2015;108:1587–98. https://doi.org/10.1016/j.bpj.2015.02.031.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clynes MA, Harvey NC, Curtis EM, Fuggle NR, Dennison EM, Cooper C. The epidemiology of osteoporosis. Br Med Bull. 2020;133:105–17.

PubMed  Google Scholar 

Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J bone Miner Res. 2007;22:465–75.

Article  PubMed  Google Scholar 

Holroyd C, Cooper C, Dennison E. Epidemiology of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2008;22:671–85.

Article  PubMed  Google Scholar 

Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D. obot Guidelines for diagnosis and management of osteoporosis. Osteoporos Int. 1997;7:390–406.

Article  CAS  PubMed  Google Scholar 

World Health Organization. WHO global air quality guidelines: particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization; 2021.

Lelieveld J, Klingmüller K, Pozzer A, Pöschl U, Fnais M, Daiber A, Münzel T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J. 2019;40:1590–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo H, Chang Z, Wu J, Li W. Air pollution and lung cancer incidence in China: Who are faced with a greater effect? Environ Int. 2019;132:105077.

Article  CAS  PubMed  Google Scholar 

Luo L, Zhang Y, Jiang J, Luan H, Yu C, Nan P, Luo B, You M. Short-term effects of ambient air pollution on hospitalization for respiratory disease in Taiyuan, China: a time-series analysis. Int J Environ Res Public Health. 2018;15:2160.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang B-Y, Fan S, Thiering E, Seissler J, Nowak D, Dong G-H, Heinrich J. Ambient air pollution and diabetes: a systematic review and meta-analysis. Environ Res. 2020;180:108817.

Article  CAS  PubMed  Google Scholar 

Zhao C-N, Xu Z, Wu G-C, Mao Y-M, Liu L-N, Dan Y-L, Tao S-S, Zhang Q, Sam NB, Fan Y-G. Emerging role of air pollution in autoimmune diseases. Autoimmun Rev. 2019;18:607–14.

Article  CAS  PubMed  Google Scholar 

Schikowski T, Altuğ H. The role of air pollution in cognitive impairment and decline. Neurochem Int. 2020;136:104708.

Article  CAS  PubMed  Google Scholar 

Miller MR. Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med. 2020;151:69–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rückerl R, Schneider A, Breitner S, Cyrys J, Peters A. Health effects of particulate air pollution: a review of epidemiological evidence. Inhal Toxicol. 2011;23:555–92.

Article  PubMed  Google Scholar 

Steenhof M, Gosens I, Strak M, Godri KJ, Hoek G, Cassee FR, Mudway IS, Kelly FJ, Harrison RM, Lebret E. In vitro toxicity of particulate matter (PM) collected at different sites in the Netherlands is associated with PM composition, size fraction and oxidative potential-the RAPTES project. Part Fibre Toxicol. 2011;8:1–15.

Article  Google Scholar 

Chen R, Li H, Cai J, Wang C, Lin Z, Liu C, Niu Y, Zhao Z, Li W, Kan H. Fine particulate air pollution and the expression of microRNAs and circulating cytokines relevant to inflammation, coagulation, and vasoconstriction. Environ Health Perspect. 2018;126:17007.

Article  Google Scholar 

Gawda A, Majka G, Nowak B, Marcinkiewicz J. Air pollution, oxidative stress, and exacerbation of autoimmune diseases. Cent Eur J Immunol. 2017;42:305–12.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pope CA III, Bhatnagar A, McCracken JP, Abplanalp W, Conklin DJ, O’Toole T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ Res. 2016;119:1204–14.

Article  CAS 

留言 (0)

沒有登入
gif