Cellular and molecular control of vertebrate somitogenesis

Hubaud, A. & Pourquié, O. Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15, 709–721 (2014).

Article  CAS  PubMed  Google Scholar 

Bulman, M. P. et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat. Genet. 24, 438–441 (2000).

Article  CAS  PubMed  Google Scholar 

Sparrow, D. B., Guillén-Navarro, E., Fatkin, D. & Dunwoodie, S. L. Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum. Mol. Genet. 17, 3761–3766 (2008).

Article  CAS  PubMed  Google Scholar 

Whittock, N. V. et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am. J. Hum. Genet. 74, 1249–1254 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McInerney-Leo, A. M. et al. Compound heterozygous mutations in RIPPLY2 associated with vertebral segmentation defects. Hum. Mol. Genet. 24, 1234–1242 (2015).

Article  CAS  PubMed  Google Scholar 

Cornier, A. S. et al. Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho–Levin syndrome. Am. J. Hum. Genet. 82, 1334–1341 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sparrow, D. B. et al. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell 149, 295–306 (2012).

Article  CAS  PubMed  Google Scholar 

Bouman, A. et al. Homozygous DMRT2 variant associates with severe rib malformations in a newborn. Am. J. Med. Genet. A 176, 1216–1221 (2018).

Article  CAS  PubMed  Google Scholar 

Turnpenny, P. D. et al. Novel mutations in DLL3, a somitogenesis gene encoding a ligand for the Notch signalling pathway, cause a consistent pattern of abnormal vertebral segmentation in spondylocostal dysostosis. J. Med. Genet. 40, 333–339 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sparrow, D. B. et al. Autosomal dominant spondylocostal dysostosis is caused by mutation in TBX6. Hum. Mol. Genet. 22, 1625–1631 (2013).

Article  CAS  PubMed  Google Scholar 

Mohamed, J. Y. et al. Mutations in MEOX1, encoding mesenchyme homeobox 1, cause Klippel–Feil anomaly. Am. J. Hum. Genet. 92, 157–161 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bayrakli, F. et al. Mutation in MEOX1 gene causes a recessive Klippel–Feil syndrome subtype. BMC Genet. 14, 95 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Sparrow, D. B. et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am. J. Hum. Genet. 78, 28–37 (2006).

Article  CAS  PubMed  Google Scholar 

Gomez, C. et al. Control of segment number in vertebrate embryos. Nature 454, 335–339 (2008).

Article  ADS  CAS  PubMed  Google Scholar 

Gomez, C. & Pourquié, O. Developmental control of segment numbers in vertebrates. J. Exp. Zool. B Mol. Dev. Evol. 312, 533–544 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Kuan, C.-Y. K., Tannahill, D., Cook, G. M. W. & Keynes, R. J. Somite polarity and segmental patterning of the peripheral nervous system. Mech. Dev. 121, 1055–1068 (2004).

Article  PubMed  Google Scholar 

Fleming, A., Kishida, M. G., Kimmel, C. B. & Keynes, R. J. Building the backbone: the development and evolution of vertebral patterning. Development 142, 1733–1744 (2015).

Article  CAS  PubMed  Google Scholar 

Scaal, M. Early development of the vertebral column. Semin. Cell Dev. Biol. 49, 83–91 (2016).

Article  PubMed  Google Scholar 

Oates, A. C., Morelli, L. G. & Ares, S. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139, 625–639 (2012).

Article  CAS  PubMed  Google Scholar 

Diaz-Cuadros, M. & Pourquie, O. In vitro systems: a new window to the segmentation clock. Dev. Growth Differ. 63, 140–153 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Lauschke, V. M., Tsiairis, C. D., François, P. & Aulehla, A. Scaling of embryonic patterning based on phase-gradient encoding. Nature 493, 101–105 (2013).

Article  ADS  PubMed  Google Scholar 

Hubaud, A., Regev, I., Mahadevan, L. & Pourquié, O. Excitable dynamics and yap-dependent mechanical cues drive the segmentation clock. Cell 171, 668–682.e11 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simsek, M. F. & Özbudak, E. M. Spatial fold change of FGF signaling encodes positional information for segmental determination in zebrafish. Cell Rep. 24, 66–78.e8 (2018).

Article  CAS  PubMed  Google Scholar 

Matsumiya, M., Tomita, T., Yoshioka-Kobayashi, K., Isomura, A. & Kageyama, R. ES cell-derived presomitic mesoderm-like tissues for analysis of synchronized oscillations in the segmentation clock. Development 145, dev156836 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Chu, L.-F. et al. An in vitro human segmentation clock model derived from embryonic stem cells. Cell Rep. 28, 2247–2255.e5 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsuda, M. et al. Recapitulating the human segmentation clock with pluripotent stem cells. Nature 580, 124–129 (2020).

Article  ADS  CAS  PubMed  Google Scholar 

Diaz-Cuadros, M. et al. In vitro characterization of the human segmentation clock. Nature 580, 113–118 (2020). Together with references 25 and 26, this article establishes in vitro systems using human PSCs to identify the human segmentation clock.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

van den Brink, S. C. et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 582, 405–409 (2020).

Article  ADS  PubMed  Google Scholar 

Veenvliet, J. V. et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science 370, eaba4937 (2020).

Article  CAS  PubMed  Google Scholar 

Sanaki-Matsumiya, M. et al. Periodic formation of epithelial somites from human pluripotent stem cells. Nat. Commun. 13, 2325 (2022).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Miao, Y. et al. Reconstruction and deconstruction of human somitogenesis in vitro. Nature 614, 500–508 (2023). This article establishes two organoid models of human somite formation, called somitoid and segmentoid, and reveals that cell sorting underlies somite anteroposterior polarity patterning.

Article  ADS  CAS  PubMed  Google Scholar 

Yamanaka, Y. et al. Reconstituting human somitogenesis in vitro. Nature 614, 509–520 (2023). Here, the authors establish an organoid model of human somite formation called axioloid, characterize the model in detail and identify a crucial role of retinoic acid in somite epithelization in vitro.

Article  ADS  CAS  PubMed  Google Scholar 

Yaman, Y. I. & Ramanathan, S. Controlling human organoid symmetry breaking reveals signaling gradients drive segmentation clock waves. Cell 186, 497–512 (2023). This article reports the use of bioengineering tools to establish an organoid model of human trunk consisting of the neural tube and somites and delineates roles of signalling gradients in regulating the wave dynamics of clock oscillations.

Article  Google Scholar 

Schoenwolf, G. C., Bleyl, S. B., Brauer, P. R. & Francis-West, P. H. Larsen’s Human Embryology E-Book (Elsevier Health Sciences, 2020).

Palmeirim, I., Henrique, D., Ish-Horowicz, D. & Pourquié, O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639–648 (1997).

Article  CAS  PubMed  Google Scholar 

Masamizu, Y. et al. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc. Natl Acad. Sci. USA 103, 1313–1318 (2006).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Aulehla, A. et al. A β-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat. Cell Biol. 10, 186 (2007).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif