Fundamentals of redox regulation in biology

Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2018).

Article  CAS  PubMed  Google Scholar 

Jacob, C., Giles, G. I., Giles, N. M. & Sies, H. Sulfur and selenium: the role of oxidation state in protein structure and function. Angew. Chem. Int. Ed. Engl. 42, 4742–4758 (2003).

Article  CAS  PubMed  Google Scholar 

Lennicke, C. & Cochemé, H. M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691–3707 (2021).

Article  CAS  PubMed  Google Scholar 

Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022). This ‘Expert Recommendation’ addresses key questions regarding the impact of oxidants on physiology and their contribution to disease.

Article  CAS  PubMed  Google Scholar 

Thannickal, V. J. & Fanburg, B. L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L1005–L1028 (2000).

Article  CAS  PubMed  Google Scholar 

D’Autreaux, B. & Toledano, M. B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007). This article describes fundamental perspectives on reactive oxygen species signalling.

Article  PubMed  Google Scholar 

Butterfield, D. A. & Perluigi, M. Redox proteomics: a key tool for new insights into protein modification with relevance to disease. Antioxid. Redox Signal. 26, 277–279 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Murphy, M. P. et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 4, 651–662 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

Article  CAS  PubMed  Google Scholar 

Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc. Natl Acad. Sci. USA 115, 5839–5848 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lundberg, J. O. & Weitzberg, E. Nitric oxide signaling in health and disease. Cell 185, 2853–2878 (2022).

Article  CAS  PubMed  Google Scholar 

Cirino, G., Szabo, C. & Papapetropoulos, A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol. Rev. 103, 31–276 (2023).

Article  CAS  PubMed  Google Scholar 

Parvez, S., Long, M. J. C., Poganik, J. R. & Aye, Y. Redox signaling by reactive electrophiles and oxidants. Chem. Rev. 118, 8798–8888 (2018). This is a comprehensive review of the signalling role of electrophiles and oxidants in biology.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rabbani, N. & Thornalley, P. J. Protein glycation — biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine. Redox Biol. 42, 101920 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noctor, G. & Foyer, C. H. Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol. 171, 1581–1592 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mittler, R., Zandalinas, S. I., Fichman, Y. & Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Biol. 23, 663–679 (2022).

Article  CAS  PubMed  Google Scholar 

Dietz, K. J. & Vogelsang, L. A general concept of quantitative abiotic stress sensing. Trends Plant Sci. 23, 237–246 (2023).

Google Scholar 

Sies, H. (ed.) Oxidative Stress: Eustress and Distress 1–844 (Academic Press, 2020).

Wild, C. P. The exposome: from concept to utility. Int. J. Epidemiol. 41, 24–32 (2012).

Article  PubMed  Google Scholar 

Xiao, W. & Loscalzo, J. Metabolic responses to reductive stress. Antioxid. Redox Signal. 32, 1330–1347 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hanschmann, E. M., Godoy, J. R., Berndt, C., Hudemann, C. & Lillig, C. H. Thioredoxins, glutaredoxins, and peroxiredoxins — molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid. Redox Signal. 19, 1539–1605 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones, D. P. & Sies, H. The redox code. Antioxid. Redox Signal. 23, 734–746 (2015). This article introduces the ‘redox code’ as a set of fundamental principles of organization of biological redox reactions.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prigogine, I. Time, structure, and fluctuations. Science 201, 777–785 (1978).

Article  CAS  PubMed  Google Scholar 

Sies, H. Oxidative eustress: on constant alert for redox homeostasis. Redox Biol. 41, 101867 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kondadi, A. K. et al. Cristae undergo continuous cycles of membrane remodelling in a MICOS-dependent manner. EMBO Rep. 21, e49776 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Billman, G. E. Homeostasis: the underappreciated and far too often ignored central organizing principle of physiology. Front. Physiol. 11, 200 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Lloyd, D., Aon, M. A. & Cortassa, S. Why homeodynamics, not homeostasis? Scientific World J. 1, 133–145 (2001).

Article  CAS  Google Scholar 

Xiong, L. I. & Garfinkel, A. Are physiological oscillations physiological? J. Physiol. https://doi.org/10.1113/JP285015 (2023).

Article  PubMed  Google Scholar 

Brash, D. E. Rethinking causation for data-intensive biology: constraints, cancellations, and quantized organisms: causality in complex organisms is sculpted by constraints rather than instigators, with outcomes perhaps better described by quantized patterns than rectilinear pathways. Bioessays 42, e1900135 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Sies, H., Berndt, C. & Jones, D. P. Oxidative stress. Annu. Rev. Biochem. 86, 715–748 (2017). This article discusses the concept of oxidative stress, physiological (eustress) and supraphysiological (distress).

Article  CAS  PubMed  Google Scholar 

Lushchak, V. I. & Storey, K. B. Oxidative stress concept updated: definitions, classifications and regulatory pathways implicated. EXCLI J. 20, 956–967 (2021).

PubMed  PubMed Central  Google Scholar 

Rattan, S. I. Molecular gerontology: from homeodynamics to hormesis. Curr. Pharm. Des. 20, 3036–3039 (2014).

Article  CAS  PubMed  Google Scholar 

Alleman, R. J., Katunga, L. A., Nelson, M. A., Brown, D. A. & Anderson, E. J. The ‘Goldilocks Zone’ from a redox perspective — adaptive vs. deleterious responses to oxidative stress in striated muscle. Front. Physiol. 5, 358 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Ursini, F., Maiorino, M. & Forman, H. J. Redox homeostasis: the golden mean of healthy living. Redox Biol. 8, 205–215 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11, 613–619 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Winterbourn, C. C. Are free radicals involved in thiol-based redox signaling? Free Radic. Biol. Med. 80, 164–170 (2015).

Article  CAS  PubMed  Google Scholar 

Holmström, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15, 411–421 (2014).

Article  PubMed  Google Scholar 

Brigelius-Flohé, R. & Flohé, L. Basic principles and emerging concepts in the redox control of transcription factors. Antioxid. Redox Signal. 15, 2335–2381 (2011). Together with Marinho et al. (2014), this comprehensive review discusses redox control of transcription factors.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif