Targeted protein degradation: from mechanisms to clinic

Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001). This study, to our knowledge, provides the first conceptualization of PROTACs and the first proof-of-principle demonstration of degradation via a peptide-based PROTAC.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, L., Zhao, J., Zhong, K., Tong, A. & Jia, D. Targeted protein degradation: mechanisms, strategies and application. Signal Transduct. Target. Ther. 7, 113 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chamberlain, P. P. et al. Structure of the human cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 21, 803–809 (2014). This study shows the crystal structure of cereblon bound to lenalidomide, revealing the binding site and of IMiD drugs.

Article  CAS  PubMed  Google Scholar 

Fischer, E. S. et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014). This study shows that the crystal structure of cereblon bound to thalidomide, lenalidomide and pomalidomide reveals the binding site of IMiD drugs and provides rationale for their activity.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020). This paper provides the first, to our knowledge, description of the LYTAC system and the first example of its use for the degradation of extracellular proteins.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010). This study identifies cereblon as the molecular target of thalidomide.

Article  CAS  PubMed  Google Scholar 

Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

Article  PubMed  Google Scholar 

Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014). Together with Kronke et al. (2014), this paper demonstrates that lenalidomide causes degradation of IKZF1 and IKZF3 in multiple myeloma cells.

Article  CAS  PubMed  Google Scholar 

Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810.e10 (2019).

Article  CAS  PubMed  Google Scholar 

Li, Z., Zhu, C., Ding, Y., Fei, Y. & Lu, B. ATTEC: a potential new approach to target proteinopathies. Autophagy 16, 185–187 (2020).

Article  CAS  PubMed  Google Scholar 

Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, T. et al. Targeted protein degradation as a powerful research tool in basic biology and drug target discovery. Nat. Struct. Mol. Biol. 27, 605–614 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schey, S. A. et al. Phase I study of an immunomodulatory thalidomide analog, CC-4047, in relapsed or refractory multiple myeloma. J. Clin. Oncol. 22, 3269–3276 (2004).

Article  CAS  PubMed  Google Scholar 

Bartlett, J. B., Dredge, K. & Dalgleish, A. G. The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat. Rev. Cancer 4, 314–322 (2004).

Article  CAS  PubMed  Google Scholar 

Mullard, A. Targeted protein degraders crowd into the clinic. Nat. Rev. Drug Discov. 20, 247–250 (2021).

Article  CAS  PubMed  Google Scholar 

Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007). This study provides structural evidence for the mechanism of action of the plant hormone auxin as a molecular glue degrader binding to the E3 ligase TIR1 and forming a ternary complex with IAA7.

Article  CAS  PubMed  Google Scholar 

Dikic, I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86, 193–224 (2017).

Article  CAS  PubMed  Google Scholar 

Ciechanover, A. Intracellular protein degradation: from a vague idea, through the lysosome and the ubiquitin-proteasome system, and onto human diseases and drug targeting (Nobel lecture). Angew. Chem. Int. Ed. Engl. 44, 5944–5967 (2005).

Article  CAS  PubMed  Google Scholar 

Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

Article  CAS  PubMed  Google Scholar 

Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

Article  CAS  PubMed  Google Scholar 

Meyer, H. J. & Rape, M. Enhanced protein degradation by branched ubiquitin chains. Cell 157, 910–921 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu, X. et al. The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation. Science 381, eadh5021 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gandhi, A. K. et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4CRBN. Br. J. Haematol. 164, 811–821 (2014).

Article  CAS  PubMed  Google Scholar 

Blackledge, N. P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157, 1445–1459 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, C. et al. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108, 837–847 (2002).

Article  CAS  PubMed  Google Scholar 

Tanimoto, K., Makino, Y., Pereira, T. & Poellinger, L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19, 4298–4309 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Min, J. H. et al. Structure of an HIF-1α -pVHL complex: hydroxyproline recognition in signaling. Science 296, 1886–1889 (2002). This study provides structural evidence for HIF-1α hydroxyproline recognition by CRL2VHLE3 ubiquitin ligase.

Article  CAS  PubMed  Google Scholar 

Yen, H. C., Xu, Q., Chou, D. M., Zhao, Z. & Elledge, S. J. Global protein stability profiling in mammalian cells. Science 322, 918–923 (2008). This study describes functional genomics as a method to identify global protein stability with GFP fusion constructs.

Article  CAS  PubMed  Google Scholar 

Grau-Bove, X., Sebe-Pedros, A. & Ruiz-Trillo, I. The eukaryotic ancestor had a complex ubiquitin signaling system of archaeal origin. Mol. Biol. Evol. 32, 726–739 (2015).

Article  CAS  PubMed  Google Scholar 

Hua, Z. & Yu, P. Diversifying evolution of the ubiquitin-26s proteasome system in Brassicaceae and Poaceae. Int. J. Mol. Sci. 20, 3226 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hua, Z. Diverse evolution in 111 plant genomes reveals purifying and dosage balancing selection models for F-box genes. Int. J. Mol. Sci. 22, 871 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simpson, L. M. et al. Target protein localization and its impact on PROTAC-mediated degradation. Cell Chem. Biol. 29, 1482–1504.e7 (2022).

Article  CAS  PubMed  Google Scholar 

Donovan, K. A. et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell 183, 1714–1731.e10 (2020). This study demonstrates the global proteomic characterization of depth and selectivity of degradation of kinases using PROTAC approach.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mayor-Ruiz, C. et al. Plasticity of the cullin-RING ligase repertoire shapes sensitivity to ligand-induced protein degradation. Mol. Cell 75, 849–858.e8 (2019).

Article  CAS  PubMed  Google Scholar 

Mahon, C., Krogan, N. J., Craik, C. S. & Pick, E. Cullin E3 ligases and their rewiring by viral factors. Biomolecules 4, 897–930 (2014).

留言 (0)

沒有登入
gif