The senescence-associated secretory phenotype and its physiological and pathological implications

Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

Article  CAS  PubMed  Google Scholar 

Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

Article  CAS  PubMed  Google Scholar 

Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

Article  CAS  PubMed  Google Scholar 

Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

Article  CAS  PubMed  Google Scholar 

Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer — role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Wiley, C. D. et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 23, 303–314 (2016).

Article  CAS  PubMed  Google Scholar 

Faust, H. J. et al. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J. Clin. Investig. 130, 5493–5507 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

Article  CAS  PubMed  Google Scholar 

Freund, A., Laberge, R.-M., Demaria, M. & Campisi, J. Lamin B1 loss is a senescence-associated biomarker. Mol. Biol. Cell 23, 2066–2075 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

Article  CAS  PubMed  Google Scholar 

Kohli, J. et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat. Protoc. 16, 2471–2498 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

Article  CAS  PubMed  Google Scholar 

Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.-Y. & Campisi, J. Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl Acad. Sci. USA 98, 12072–12077 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, e301 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

Article  CAS  PubMed  Google Scholar 

Kuilman, T. et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133, 1019–1031 (2008).

Article  CAS  PubMed  Google Scholar 

Kuilman, T. & Peeper, D. S. Senescence-messaging secretome: SMS-ing cellular stress. Nat. Rev. Cancer 9, 81–94 (2009).

Article  CAS  PubMed  Google Scholar 

Mosteiro, L. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, eaaf4445 (2016).

Article  Google Scholar 

Glück, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Wang, B. et al. Pharmacological CDK4/6 inhibition reveals a p53‐dependent senescent state with restricted toxicity. EMBO J. 41, e108946 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernandez-Segura, A. et al. Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652–2660.e4 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basisty, N. et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Wiley, C. D. et al. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab. 33, 1124–1136.e5 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takasugi, M. et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat. Commun. 8, 15729 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borghesan, M. et al. Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep. 27, 3956–3971.e6 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sagini, K. et al. Oncogenic H-Ras expression induces fatty acid profile changes in human fibroblasts and extracellular vesicles. Int. J. Mol. Sci. 19, 3515 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Weiner-Gorzel, K. et al. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med. 4, 745–758 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orjalo, A. V., Bhaumik, D., Gengler, B. K., Scott, G. K. & Campisi, J. Cell surface-bound IL-1α is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc. Natl Acad. Sci. USA 106, 17031–17036 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakamura, Y., Aihara, R., Iwata, H., Kuwayama, T. & Shirasuna, K. IL1B triggers inflammatory cytokine production in bovine oviduct epithelial cells and induces neutrophil accumulation via CCL2. Am. J. Reprod. Immunol. 85, e13365 (2021).

Article  CAS  PubMed  Google Scholar 

Ortiz-Montero, P., Londoño-Vallejo, A. & Vernot, J.-P. Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun. Signal 15, 17 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Wiggins, K. A. et al. IL‐1α cleavage by inflammatory caspases of the noncanonical inflammasome controls the senescence‐associated secretory phenotype. Aging Cell 18, e12946 (2019).

Article  PubMed  PubMed Central  Google Scholar 

McCarthy, D. A., Clark, R. R., Bartling, T. R., Trebak, M. & Melendez, J. A. Redox control of the senescence regulator interleukin-1α and the secretory phenotype. J. Biol. Chem. 288, 32149–32159 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandinova, A. et al. S100A13 mediates the copper-dependent stress-induced release of IL-1α from both human U937 and murine NIH 3T3 cells. J. Cell Sci. 116, 2687–2696 (2003).

Article  CAS  PubMed  Google Scholar 

Su, Y. et al. S100A13 promotes senescence-associated secretory phenotype and cellular senescence via modulation of non-classical secretion of IL-1α. Aging 11, 549–572 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhaumik, D. et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging 1, 402–411 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, A.-P. et al. Pulmonary artery smooth muscle cell senescence promotes the proliferation of PASMCs by paracrine IL-6 in hypoxia-induced pulmonary hypertension. Front. Physiol. 12, 656139 (2021).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif