Epithelial–mesenchymal transition in tissue repair and degeneration

Nieto, M. A., Huang, R. Y.-J., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

Article  CAS  PubMed  Google Scholar 

Dongre, A. & Weinberg, R. A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 20, 69–84 (2019).

Article  CAS  PubMed  Google Scholar 

Stone, R. C. et al. Epithelial–mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 365, 495–506 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, J. et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 21, 341–352 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Pastushenko, I. & Blanpain, C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29, 212–226 (2019).

Article  CAS  PubMed  Google Scholar 

Neumann, D. P., Goodall, G. J. & Gregory, P. A. Regulation of splicing and circularisation of RNA in epithelial mesenchymal plasticity. Semin. Cell Dev. Biol. 75, 50–60 (2018).

Article  CAS  PubMed  Google Scholar 

Skrypek, N., Goossens, S., De Smedt, E., Vandamme, N. & Berx, G. Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity. Trends Genet. 33, 943–959 (2017).

Article  CAS  PubMed  Google Scholar 

Sample, R. A., Nogueira, M. F., Mitra, R. D. & Puram, S. V. Epigenetic regulation of hybrid epithelial–mesenchymal cell states in cancer. Oncogene 42, 2237–2248 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Morin, C., Moyret-Lalle, C., Mertani, H. C., Diaz, J.-J. & Marcel, V. Heterogeneity and dynamic of EMT through the plasticity of ribosome and mRNA translation. Biochim. Biophys. Acta Rev. Cancer 1877, 188718 (2022).

Article  CAS  PubMed  Google Scholar 

Cano, A. et al. The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2, 76–83 (2000).

Article  CAS  PubMed  Google Scholar 

Batlle, E. et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2, 84–89 (2000).

Article  CAS  PubMed  Google Scholar 

Stanisavljevic, J., Porta-de-la-Riva, M., Batlle, R., de Herreros, A. G. & Baulida, J. The p65 subunit of NF-κB and PARP1 assist Snail1 in activating fibronectin transcription. J. Cell Sci. 124, 4161–4171 (2011).

Article  CAS  PubMed  Google Scholar 

Hsu, D. S.-S. et al. Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell 26, 534–548 (2014).

Article  CAS  PubMed  Google Scholar 

Aghdassi, A. et al. Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 61, 439–448 (2012).

Article  CAS  PubMed  Google Scholar 

Lehmann, W. et al. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat. Commun. 7, 10498 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feldker, N. et al. Genome-wide cooperation of EMT transcription factor ZEB1 with YAP and AP-1 in breast cancer. EMBO J. 39, e103209 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leptin, M. twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev. 5, 1568–1576 (1991).

Article  CAS  PubMed  Google Scholar 

Chen, Z. F. & Behringer, R. R. twist is required in head mesenchyme for cranial neural tube morphogenesis. Genes Dev. 9, 686–699 (1995).

Article  CAS  PubMed  Google Scholar 

Ocaña, O. H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22, 709–724 (2012).

Article  PubMed  Google Scholar 

Yeo, S.-Y. et al. A positive feedback loop bi-stably activates fibroblasts. Nat. Commun. 9, 3016 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Nieto, M. A. Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342, 1234850 (2013).

Article  PubMed  Google Scholar 

Probst, S. et al. Spatiotemporal sequence of mesoderm and endoderm lineage segregation during mouse gastrulation. Development 148, dev193789 (2021).

Article  CAS  PubMed  Google Scholar 

Burtscher, I. & Lickert, H. Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo. Development 136, 1029–1038 (2009).

Article  CAS  PubMed  Google Scholar 

Nowotschin, S., Hadjantonakis, A.-K. & Campbell, K. The endoderm: a divergent cell lineage with many commonalities. Development 146, dev150920 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scheibner, K. et al. Epithelial cell plasticity drives endoderm formation during gastrulation. Nat. Cell Biol. 23, 692–703 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jägle, S. et al. SNAIL1-mediated downregulation of FOXA proteins facilitates the inactivation of transcriptional enhancer elements at key epithelial genes in colorectal cancer cells. PLoS Genet. 13, e1007109 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Piacentino, M. L., Li, Y. & Bronner, M. E. Epithelial-to-mesenchymal transition and different migration strategies as viewed from the neural crest. Curr. Opin. Cell Biol. 66, 43–50 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, Y. et al. In vivo quantitative imaging provides insights into trunk neural crest migration. Cell Rep. 26, 1489–1500.e3 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

E Davies, J. et al. Epithelial-mesenchymal transition during extravillous trophoblast differentiation. Cell Adh. Migr. 10, 310–321 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Turco, M. Y. & Moffett, A. Development of the human placenta. Development 146, dev163428 (2019).

Article  CAS  PubMed  Google Scholar 

DaSilva-Arnold, S., James, J. L., Al-Khan, A., Zamudio, S. & Illsley, N. P. Differentiation of first trimester cytotrophoblast to extravillous trophoblast involves an epithelial-mesenchymal transition. Placenta 36, 1412–1418 (2015).

Article  CAS  PubMed  Google Scholar 

Vento-Tormo, R. et al. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greenbaum, S. et al. A spatially resolved timeline of the human maternal–fetal interface. Nature 619, 595–605 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kudo-Saito, C., Shirako, H., Takeuchi, T. & Kawakami, Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15, 195–206 (2009).

Article  CAS  PubMed  Google Scholar 

Shibue, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Du, L. et al. Mesenchymal-to-epithelial transition in the placental tissues of patients with preeclampsia. Hypertens. Res. 40, 67–72 (2017).

Article  CAS  PubMed  Google Scholar 

Harmon, A. C. et al. The role of inflammation in the pathology of preeclampsia. Clin. Sci. 130, 409–419 (2016).

Article  CAS 

留言 (0)

沒有登入
gif