The osteoclastic activity in apical distal region of molar mesial roots affects orthodontic tooth movement and root resorption in rats

McKiernan, E. X., McKiernan, F. & Jones, M. L. Psychological profiles and motives of adults seeking orthodontic treatment. Int. J. Adult Orthodon. Orthognath. Surg. 7, 187–198 (1992).

CAS  PubMed  Google Scholar 

Proffit, W. R., Fields, H. W. & Moray, L. J. Prevalence of malocclusion and orthodontic treatment need in the United States: estimates from the NHANES III survey. Int J. Adult Orthodon. Orthognath. Surg. 13, 97–106 (1998).

CAS  PubMed  Google Scholar 

Reitan, K. Effects of force magnitude and direction of tooth movement on different alveolar bone types. Angle Orthod. 34, 244–255 (1964).

Google Scholar 

Meikle, M. C. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur. J. Orthod. 28, 221–240 (2006).

Article  PubMed  Google Scholar 

Kraiwattanapong, K. & Samruajbenjakun, B. Tissue response resulting from different force magnitudes combined with corticotomy in rats. Angle Orthod. 89, 797–803 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Akl, H. E., El-Beialy, A. R., El-Ghafour, M. A., Abouelezz, A. M. & El Sharaby, F. A. Root resorption associated with maxillary buccal segment intrusion using variable force magnitudes. Angle Orthod. 91, 733–742 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Gonzales, C. et al. Force magnitude and duration effects on amount of tooth movement and root resorption in the rat molar. Angle Orthod. 78, 502–509 (2008).

Article  PubMed  Google Scholar 

Theodorou, C. I., Kuijpers-Jagtman, A. M., Bronkhorst, E. M. & Wagener, F. A. D. T. Optimal force magnitude for bodily orthodontic tooth movement with fixed appliances: A systematic review. Am. J. Orthod. Dentofac. Orthop. 156, 582–592 (2019).

Article  Google Scholar 

Cesur, M. G. et al. Comparison of BALP, CTX-I, and IL-4 levels around miniscrew implants during orthodontic tooth movement between two different amounts of force. Angle Orthod. 89, 630–636 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Yee, J. A., Türk, T., Elekdağ-Türk, S., Cheng, L. L. & Darendeliler, M. A. Rate of tooth movement under heavy and light continuous orthodontic forces. Am. J. Orthod. Dentofac. Orthop. 136, 150.e151–150.e159 (2009).

Article  Google Scholar 

Kraiwattanapong, K. & Samruajbenjakun, B. Effects of different force magnitudes on corticotomy-assisted orthodontic tooth movement in rats. Angle Orthod. 88, 632–637 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Krishnan, V. & Davidovitch, Z. E. Cellular, molecular, and tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofac. Orthop. 129, 469.e461–469.432 (2006).

Article  Google Scholar 

Henneman, S., Von den Hoff, J. W. & Maltha, J. C. Mechanobiology of tooth movement. Eur. J. Orthod. 30, 299–306 (2008).

Article  CAS  PubMed  Google Scholar 

Li, Z. et al. Stress distribution and collagen remodeling of periodontal ligament during orthodontic tooth movement. Front. Pharmacol. 10, 1263 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Alikhani, M. et al. Saturation of the biological response to orthodontic forces and its effect on the rate of tooth movement. Orthod. Craniofac. Res. 18, 8–17 (2015).

Article  PubMed  Google Scholar 

King, G. J., Keeling, S. D., McCoy, E. A. & Ward, T. H. Measuring dental drift and orthodontic tooth movement in response to various initial forces in adult rats. Am. J. Orthod. Dentofac. Orthop. 99, 456–465 (1991).

Article  CAS  Google Scholar 

Wu, J. L., Liu, Y. F., Peng, W., Dong, H. Y. & Zhang, J. X. A biomechanical case study on the optimal orthodontic force on the maxillary canine tooth based on finite element analysis. J. Zhejiang Univ. Sci. B 19, 535–546 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Li, M. et al. Investigation of optimal orthodontic force at the cellular level through three-dimensionally cultured periodontal ligament cells. Eur. J. Orthod. 38, 366–372 (2016).

Article  PubMed  Google Scholar 

Zhang, H., Cui, J. W., Lu, X. L. & Wang, M. Q. Finite element analysis on tooth and periodontal stress under simulated occlusal loads. J. Oral Rehabil. 44, 526–536 (2017).

Article  CAS  PubMed  Google Scholar 

Pan, S. et al. Identification of ferroptosis, necroptosis, and pyroptosis-associated genes in periodontitis-affected human periodontal tissue using integrated bioinformatic analysis. Front. Pharmacol. 13, 1098851 (2022).

Article  CAS  PubMed  Google Scholar 

Pani, P. et al. IL-1B(3954) polymorphism and red complex bacteria increase IL-1β (GCF) levels in periodontitis. J. Periodontal Res. 56, 501–511 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brodzikowska, A., Górski, B. & Bogusławska-Kapała, A. Association between IL-1 Gene Polymorphisms and Stage III Grade B Periodontitis in Polish Population. Int. J. Environ. Res. Public Health 19, 14687 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

von Böhl, M. & Kuijpers-Jagtman, A. M. Hyalinization during orthodontic tooth movement: a systematic review on tissue reactions. Eur. J. Orthod. 31, 30–36, https://doi.org/10.1093/ejo/cjn080 (2009).

Article  Google Scholar 

Goldsmith, C. S. & Bell-Pedersen, D. Diverse roles for MAPK signaling in circadian clocks. Adv. Genet. 84, 1–39 (2013).

Article  CAS  PubMed  Google Scholar 

Xie, Y. et al. Orthodontic force-induced BMAL1 in PDLCs is a vital osteoclastic activator. J. Dent. Res. 101, 177–186 (2022).

Article  CAS  PubMed  Google Scholar 

Ren, Y., Maltha, J. C. & Kuijpers-Jagtman, A. M. Optimum force magnitude for orthodontic tooth movement: a systematic literature review. Angle Orthod. 73, 86–92 (2003).

PubMed  Google Scholar 

Kalajzic, Z. et al. Effect of cyclical forces on the periodontal ligament and alveolar bone remodeling during orthodontic tooth movement. Angle Orthod. 84, 297–303 (2014).

Article  PubMed  Google Scholar 

Cattaneo, P. M., Dalstra, M. & Melsen, B. Moment-to-force ratio, center of rotation, and force level: A finite element study predicting their interdependency for simulated orthodontic loading regimens. Am. J. Orthod. Dentofac. Orthop. 133, 681–689 (2008).

Article  Google Scholar 

Yoshida, N., Jost-Brinkmann, P.-G., Koga, Y., Mimaki, N. & Kobayashi, K. Experimental evaluation of initial tooth displacement, center of resistance, and center of rotation under the influence of an orthodontic force. Am. J. Orthod. Dentofac. Orthop. 120, 190–197 (2001).

Article  CAS  Google Scholar 

Schneider, J., Geiger, M. & Sander, F.-G. Numerical experiments on long-time orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 121, 257–265 (2002).

Article  Google Scholar 

Meyer, B. N., Chen, J. & Katona, T. R. Does the center of resistance depend on the direction of tooth movement? Am. J. Orthod. Dentofac. Orthop. 137, 354–361 (2010).

Article  Google Scholar 

Verna, C., Cattaneo, P. M. & Dalstra, M. Corticotomy affects both the modus and magnitude of orthodontic tooth movement. Eur. J. Orthod. 40, 107–112 (2018).

Article  PubMed  Google Scholar 

Abdul Wahab, R. M. et al. Enzyme activity profiles and ELISA analysis of biomarkers from human saliva and gingival crevicular fluid during orthodontic tooth movement using self-ligating brackets. Oral. Health Dent. Manag 13, 194–199 (2014).

PubMed  Google Scholar 

Keng, F.-Y., Quick, A. N., Swain, M. V. & Herbison, P. A comparison of space closure rates between preactivated nickel-titanium and titanium-molybdenum alloy T-loops: a randomized controlled clinical trial. Eur. J. Orthod. 34, 33–38 (2012).

Article  PubMed  Google Scholar 

Falkensammer, F. et al. Impact of extracorporeal shock-wave therapy on the stability of temporary anchorage devices in adults: a single-center, randomized, placebo-controlled clinical trial. Am. J. Orthod. Dentofac. Orthop. 146, 413–422 (2014).

Article  Google Scholar 

Liu, X. et al. Effects of upper-molar distalization using clear aligners in combination with Class II elastics: a three-dimensional finite element analysis. BMC Oral Health 22, 546 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kohno, T., Matsumoto, Y., Kanno, Z., Warita, H. & Soma, K. Experimental tooth movement under light orthodontic forces: rates of tooth movement and changes of the periodontium. J. Orthod. 29, 129–135 (2002).

Article  CAS  PubMed  Google Scholar 

Viecilli, R. F., Kar-Kuri, M. H., Varriale, J., Budiman, A. & Janal, M. Effects of initial stresses and time on orthodontic external root resorption. J. Dent. Res. 92, 346–351 (2013).

Article  CAS  PubMed  Google Scholar 

Hazan-Molina, H., Gabet, Y., Aizenbud, I., Aizenbud, N. & Aizenbud, D. Orthodontic force and extracorporeal shock wave therapy: assessment of orthodontic tooth movement and bone morphometry in a rat model. Arch. Oral Biol. 134, 105327 (2022).

Article  CAS  PubMed  Google Scholar 

Murphy, C. A. et al. Effect of corticision and different force magnitudes on orthodontic tooth movement in a rat model. Am. J. Orthod. Dentofac. Orthop. 146, 55–66 (2014).

Article  Google Scholar 

Ueda, M. et al. Involvement of interleukins-17 and -34 in exacerbated orthodontic root resorption by jiggling force during rat experimental tooth movement. J. World Fed. Orthod. 9, 47–55 (2020).

Article  PubMed 

留言 (0)

沒有登入
gif