Rapid genomic sequencing for genetic disease diagnosis and therapy in intensive care units: a review

The Holy Bible, New International Version, HarperCollins, 1973/2011, Isaiah 65.

Ely DM, Driscoll AK. Infant mortality in the United States: Provisional data from the 2022 period linked birth/infant death file. National Center for Health Statistics. Vital Statistics Rapid Release; no 33. Hyattsville, MD: National Center for Health Statistics. https://doi.org/10.15620/cdc:133699 (2023).

OECD. Health at a Glance 2023: OECD Indicators, OECD Publishing, Paris, https://doi.org/10.1787/7a7afb35-en (2023).

Owen, M. J. et al. Reclassification of the etiology of infant mortality with whole-genome sequencing. JAMA Netw. Open 6, e2254069 (2023).

Article  ADS  PubMed  PubMed Central  Google Scholar 

Verma, I. C. & Puri, R. D. Global burden of genetic disease and the role of genetic screening. Semin. Fetal Neonatal Med. 20, 354–363 (2015).

Article  CAS  PubMed  Google Scholar 

Kingsmore, S. F. & Cole, F. S. The role of genome sequencing in neonatal intensive care units. Annu. Rev. Genomics Hum. Genet. 23, 427–448 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saunders, C. J. et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci. Transl. Med. 4, 154ra135 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Dinwiddie, D. L. et al. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome. Genomics 102, 148–156 (2013).

Article  CAS  PubMed  Google Scholar 

Miller, N. A. et al. A 26-hour system of highly sensitive whole genome sequencing for emergency management of genetic diseases. Genome Med. 7, 100 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Noll, A. C. et al. Clinical detection of deletion structural variants in whole-genome sequences. NPJ Genom Med. 1, 16026 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Twist, G. P. et al. Constellation: a tool for rapid, automated phenotype assignment of a highly polymorphic pharmacogene, CYP2D6, from whole-genome sequences. NPJ Genom Med. 1, 15007 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clark, M. M. et al. Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Sci. Transl. Med. 11, eaat6177 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Ramchandar, N. et al. Diagnosis of cytomegalovirus infection from clinical whole genome sequencing. Sci. Rep. 10, 11020 (2020).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Owen, M. J. et al. An automated 13.5 h system for scalable diagnosis and acute management guidance for genetic diseases. Nat Commun 13, 4057 (2022).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Vijayaraghavan, P. et al. The Genomic landscape of short tandem repeats across multiple ancestries. PLoS One 18, e0279430 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dissected OMIM Morbid Map Scorecard [cited 2023 December 29]. Available from: https://www.omim.org/statistics/geneMap.

OMIM statistics update [cited 2024 January 29]. Available from: https://www.omim.org/statistics/update.

[cited 2023 December 11]. Available from: https://www.ncbi.nlm.nih.gov/dbvar/?term=pathogenic+or+likely+pathogenic.

[cited 2023 December 29]. Available from: https://www.ncbi.nlm.nih.gov/dbvar?term =(DMD%5BGene%5D)%20AND%20(%22Pathogenic%22%5BClinical%20Interpretation%5D%20OR%20%22likely%20pathogenic%22%5BClinical%20Interpretation%5D).

Miller, D. E. et al. Targeted long-read sequencing identifies missing disease-causing variation. Am. J. Hum. Genet. 108, 1436–1449 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skowronek, D. et al. Cas9-mediated nanopore sequencing enables precise characterization of structural variants in CCM genes. Int. J. Mol. Sci. 23, 15639 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, X. et al. Developmental and temporal characteristics of clonal sperm mosaicism. Cell 184, 4772–4783 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Annear, D. J. et al. Non-Mendelian inheritance patterns and extreme deviation rates of CGG repeats in autism. Genome Res. 32, 1967–1980 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Wallace, D. C. Mitochondrial genetic medicine. Nat Genet 50, 1642–1649 (2018).

Article  CAS  PubMed  Google Scholar 

Thamban, T., Agarwaal, V. & Khosla, S. Role of genomic imprinting in mammalian development. J. Biosci. 45, 20 (2020).

Article  PubMed  Google Scholar 

Kingsmore, S. F. et al. Next-generation community genetics for low- and middle-income countries. Genome Med. 4, 25 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Hedrick, P. W. Resistance to malaria in humans: the impact of strong, recent selection. Malar J. 11, 349 (2012).

Article  PubMed  PubMed Central  Google Scholar 

eMERGE Clinical Annotation Working Group. Frequency of genomic secondary findings among 21,915 eMERGE network participants. Genet Med. 22, 1470–1477 (2020).

Article  Google Scholar 

Haer-Wigman, L. et al. 1 in 38 individuals at risk of a dominant medically actionable disease. Eur. J. Hum. Genet. 27, 325–330 (2019).

Article  PubMed  Google Scholar 

Van Hout, C. V. et al. Exome sequencing and characterization of 49,960 individuals in the UK Biobank. Nature 586, 749–756 (2020).

Article  ADS  PubMed  PubMed Central  Google Scholar 

Yang, Y. et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312, 1870–1879 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kingsmore, S. F. et al. A randomized, controlled trial of the analytic and diagnostic performance of singleton and trio, rapid genome and exome sequencing in ill infants. Am. J. Hum. Genet 105, 719–733 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ceyhan-Birsoy, O. et al. Interpretation of genomic sequencing results in healthy and Ill newborns: Results from the BabySeq project. Am. J. Hum. Genet 104, 76–93 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marshall, D. A. et al. Direct health-care costs for children diagnosed with genetic diseases are significantly higher than for children with other chronic diseases. Genet Med. 21, 1049–1057 (2019).

Article  PubMed  Google Scholar 

Dukhovny, D. & Zupancic, J. A. F. Economic evaluation with clinical trials in neonatology. Neoreviews 12, e69–e75 (2011).

Article  Google Scholar 

Gonzaludo, N. et al. Estimating the burden and economic impact of pediatric genetic disease. Genet Med. 21, 1781–1789 (2019).

Article  PubMed  Google Scholar 

Harrison, W. & Goodman, D. Epidemiologic trends in neonatal intensive care, 2007-2012. JAMA Pediatr. 169, 855–862 (2015).

Article  PubMed  Google Scholar 

Wu, B. et al. Application of full-spectrum rapid clinical genome sequencing improves diagnostic rate and clinical outcomes in critically Ill infants in the China neonatal genomes project. Crit Care Med. 49, 1674–1683 (2021).

Article  ADS  CAS  PubMed  Google Scholar 

Guo, F. et al. Evidence from 2100 index cases supports genome sequencing as a first-tier genetic test. Genet Med. 26, 100995 (2023).

Article  PubMed  Google Scholar 

Owen, M. J. et al. Rapid sequencing-based diagnosis of thiamine metabolism dysfunction syndrome. N. Engl. J. Med. 384, 2159–2161 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Gorzynski, J. E. et al. Ultrarapid nanopore genome sequencing in a critical care setting. N. Engl. J. Med. 386, 700–702 (2022).

Article  PubMed  Google Scholar 

Goenka, S. D. et al. Accelerated identification of disease-causing variants with ultra-rapid nanopore genome sequencing. Nat Biotechnol. 40, 1035–1041 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vermeulen, C. et al. Ultra-fast deep-learned CNS tumour classification during surgery. Nature 622, 842–849 (2023).

Article 

留言 (0)

沒有登入
gif