Scheuerle, A. E. & Ursini, M. v. Incontinentia pigmenti. in GeneReviews((R)) (eds. Adam, M. P. et al.) (Seattle, WA, 1993).
Bodemer, C. et al. Multidisciplinary consensus recommendations from a European network for the diagnosis and practical management of patients with incontinentia pigmenti. J. Eur. Acad. Dermatol. Venereol. 34, 1415–1424 (2020).
Article CAS PubMed Google Scholar
Kim, H. Y. et al. Importance of extracutaneous organ involvement in determining the clinical severity and prognosis of incontinentia pigmenti caused by mutations in the IKBKG gene. Exp. Dermatol. 30, 676–683 (2021).
Article CAS PubMed Google Scholar
Cammarata-Scalisi, F., Fusco, F. & Ursini, M. V. Incontinentia pigmenti. Actas Dermosifiliogr. (Engl. Ed.) 110, 273–278 (2019).
Article CAS PubMed Google Scholar
Kenwrick, S. et al. Survival of male patients with incontinentia pigmenti carrying a lethal mutation can be explained by somatic mosaicism or Klinefelter syndrome. Am. J. Hum. Genet. 69, 1210–1217 (2001).
Article CAS PubMed Google Scholar
Kawai, M. et al. Molecular analysis of low-level mosaicism of the IKBKG mutation using the X chromosome inactivation pattern in Incontinentia Pigmenti. Mol. Genet. Genom. Med. 8, e1531 (2020).
Conte, M. I. et al. Insight into IKBKG/NEMO locus: report of new mutations and complex genomic rearrangements leading to incontinentia pigmenti disease. Hum. Mutat. 35, 165–177 (2014).
Article CAS PubMed Google Scholar
Aradhya, S. et al. A recurrent deletion in the ubiquitously expressed NEMO (IKK-gamma) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum. Mol. Genet. 10, 2171–2179 (2001).
Article CAS PubMed Google Scholar
Fusco, F. et al. Molecular analysis of the genetic defect in a large cohort of IP patients and identification of novel NEMO mutations interfering with NF-kappaB activation. Hum. Mol. Genet. 13, 1763–1773 (2004).
Article CAS PubMed Google Scholar
Haque, M. N. et al. Analysis of IKBKG/NEMO gene in five Japanese cases of incontinentia pigmenti with retinopathy: fine genomic assay of a rare male case with mosaicism. J. Hum. Genet. 66, 205–214 (2021).
Article CAS PubMed Google Scholar
Francesca, F. et al. Microdeletion/duplication at the Xq28 IP locus causes a de novo IKBKG/NEMO/IKKgamma exon4_10 deletion in families with incontinentia pigmenti. Hum. Mutat. 30, 1284–1291 (2009).
Pizzamiglio, M. R. et al. Incontinentia pigmenti: learning disabilities are a fundamental hallmark of the disease. PLoS One 9, e87771 (2014).
Article PubMed PubMed Central Google Scholar
Wang, O. et al. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome Res. 29, 798–808 (2019).
Article CAS PubMed PubMed Central Google Scholar
Zonana, J. et al. A novel X-linked disorder of immune deficiency and hypohidrotic ectodermal dysplasia is allelic to incontinentia pigmenti and due to mutations in IKK-gamma (NEMO). Am. J. Hum. Genet. 67, 1555–1562 (2000).
Article CAS PubMed PubMed Central Google Scholar
Jiang, J. et al. NEMO gene mutations in two chinese females with incontinentia pigmenti. Clin. Cosmet. Investig. Dermatol. 15, 815–821 (2022).
Article PubMed PubMed Central Google Scholar
Ohnishi, H. et al. Immunodeficiency in two female patients with incontinentia pigmenti with heterozygous NEMO mutation diagnosed by LPS unresponsiveness. J. Clin. Immunol. 37, 529–538 (2017).
Article CAS PubMed Google Scholar
Kawai, T. et al. Frequent somatic mosaicism of NEMO in T cells of patients with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. Blood 119, 5458–5466 (2012).
Article CAS PubMed Google Scholar
Dangouloff-Ros, V. et al. Severe neuroimaging anomalies are usually associated with random X inactivation in leucocytes circulating DNA in X-linked dominant Incontinentia Pigmenti. Mol. Genet. Metab. 122, 140–144 (2017).
Article CAS PubMed Google Scholar
Sun, S. et al. A novel inhibitor of nuclear factor kappa-B kinase subunit gamma mutation identified in an incontinentia pigmenti patient with syndromic tooth agenesis. Arch. Oral. Biol. 101, 100–107 (2019).
Article CAS PubMed Google Scholar
Fryssira, H. et al. Incontinentia pigmenti revisited. A novel nonsense mutation of the IKBKG gene. Acta Paediatr. 100, 128–133 (2011).
Article CAS PubMed Google Scholar
Ramírez-Alejo, N. et al. Novel hypomorphic mutation in IKBKG impairs NEMO-ubiquitylation causing ectodermal dysplasia, immunodeficiency, incontinentia pigmenti, and immune thrombocytopenic purpura. Clin. Immunol. 160, 163–171 (2015).
Hull, S. et al. Somatic mosaicism of a novel IKBKG mutation in a male patient with incontinentia pigmenti. Am. J. Med. Genet. A 167, 1601–1604 (2015).
Article CAS PubMed Google Scholar
Bardaro, T. et al. Two cases of misinterpretation of molecular results in incontinentia pigmenti, and a PCR-based method to discriminate NEMO/IKKgamma dene deletion. Hum. Mutat. 21, 8–11 (2003).
Article CAS PubMed Google Scholar
Steffann, J. et al. A novel PCR approach for prenatal detection of the common NEMO rearrangement in incontinentia pigmenti. Prenat. Diagn. 24, 384–388 (2004).
Article CAS PubMed Google Scholar
Fusco, F. et al. Incontinentia pigmenti: report on data from 2000 to 2013. Orphanet J. Rare Dis. 9, 93 (2014).
Article PubMed PubMed Central Google Scholar
Wang, R., Lara-Corrales, I., Kannu, P. & Pope, E. Unraveling incontinentia pigmenti: a comparison of phenotype and genotype variants. J. Am. Acad. Dermatol 81, 1142–1149 (2019).
Article CAS PubMed Google Scholar
Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res. 27, 757–767 (2017).
Article CAS PubMed PubMed Central Google Scholar
Marks, P. et al. Resolving the full spectrum of human genome variation using linked-reads. Genome Res. 29, 635–645 (2019).
Article CAS PubMed PubMed Central Google Scholar
Peters, B. A., Liu, J. & Drmanac, R. Co-barcoded sequence reads from long DNA fragments: a cost-effective solution for ‘perfect genome’ sequencing. Front. Genet. 5, 466 (2014).
Zhang, L., Zhou, X., Weng, Z. & Sidow, A. Assessment of human diploid genome assembly with 10x linked-reads data. Gigascience 8, giz141 (2019).
Article PubMed PubMed Central Google Scholar
Mao, Q. et al. The whole genome sequences and experimentally phased haplotypes of over 100 personal genomes. Gigascience 5, 42 (2016).
Article PubMed PubMed Central Google Scholar
Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinformatics 70, e102 (2020).
Article CAS PubMed Google Scholar
Ishengoma, E. & Rhode, C. Using SPAdes, AUGUSTUS, and BLAST in an automated pipeline for clustering homologous exome sequences. Curr. Protoc. 2, e449 (2022).
留言 (0)