Enhancer selectivity in space and time: from enhancer–promoter interactions to promoter activation

Bentovim, L., Harden, T. T. & DePace, A. H. Transcriptional precision and accuracy in development: from measurements to models and mechanisms. Development 144, 3855–3866 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ong, C.-T. & Corces, V. G. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283–293 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Field, A. & Adelman, K. Evaluating enhancer function and transcription. Annu. Rev. Biochem. 89, 213–234 (2020).

Article  CAS  PubMed  Google Scholar 

Zabidi, M. A. & Stark, A. Regulatory enhancer–core-promoter communication via transcription factors and cofactors. Trends Genet. 32, 801–814 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Spitz, F. & Furlong, E. E. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).

Article  CAS  PubMed  Google Scholar 

Banerji, J., Olson, L. & Schaffner, W. A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33, 729–740 (1983).

Article  CAS  PubMed  Google Scholar 

Gillies, S. D., Morrison, S. L., Oi, V. T. & Tonegawa, S. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33, 717–728 (1983).

Article  CAS  PubMed  Google Scholar 

Mercola, M., Wang, X.-F., Olsen, J. & Calame, K. Transcriptional enhancer elements in the mouse immunoglobulin heavy chain locus. Science 221, 663–665 (1983).

Article  ADS  CAS  PubMed  Google Scholar 

Banerji, J., Rusconi, S. & Schaffner, W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308 (1981).

Article  CAS  PubMed  Google Scholar 

Halfon, M. S. Studying transcriptional enhancers: the founder fallacy, validation creep, and other biases. Trends Genet. 35, 93–103 (2019).

Article  CAS  PubMed  Google Scholar 

Galouzis, C. C. & Furlong, E. E. Regulating specificity in enhancer–promoter communication. Curr. Opin. Cell Biol. 75, 102065 (2022).

Article  CAS  PubMed  Google Scholar 

van Arensbergen, J., van Steensel, B. & Bussemaker, H. J. In search of the determinants of enhancer–promoter interaction specificity. Trends Cell Biol. 24, 695–702 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Furlong, E. E. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Moreau, P. et al. The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Res. 9, 6047–6068 (1981).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Travers, A. Chromatin modification by DNA tracking. Proc. Natl Acad. Sci. USA 96, 13634–13637 (1999).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Hatzis, P. & Talianidis, I. Dynamics of enhancer–promoter communication during differentiation-induced gene activation. Mol. Cell 10, 1467–1477 (2002).

Article  CAS  PubMed  Google Scholar 

Bulger, M. & Groudine, M. Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 13, 2465–2477 (1999).

Article  CAS  PubMed  Google Scholar 

Chen, Z. et al. Widespread increase in enhancer–promoter interactions during developmental enhancer activation in mammals. Preprint at bioRxiv https://doi.org/10.1101/2022.11.18.516017 (2022).

Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Goel, V. Y., Huseyin, M. K. & Hansen, A. S. Region capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments. Nat. Genet. 55, 1048–1056 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuin, J. et al. Nonlinear control of transcription through enhancer–promoter interactions. Nature 604, 571–577 (2022).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Brückner, D. B., Chen, H., Barinov, L., Zoller, B. & Gregor, T. Stochastic motion and transcriptional dynamics of pairs of distal DNA loci on a compacted chromosome. Science 380, 1357–1362 (2023).

Article  ADS  PubMed  Google Scholar 

Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Chen, H. et al. Dynamic interplay between enhancer–promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng, W. et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158, 849–860 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsieh, T.-H. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hsieh, T.-H. S. et al. Enhancer–promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1. Nat. Genet. 54, 1919–1932 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aljahani, A. et al. Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF. Nat. Commun. 13, 2139 (2022).

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karr, J. P., Ferrie, J. J., Tjian, R. & Darzacq, X. The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer–promoter communication. Genes Dev. 36, 7–16 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alexander, J. M. et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. eLife 8, e41769 (2019).

留言 (0)

沒有登入
gif