Comprehensive assessment of TECENTRIQ® and OPDIVO®: analyzing immunotherapy indications withdrawn in triple-negative breast cancer and hepatocellular carcinoma

Sangro, B., Chan, S. L., Meyer, T., Reig, M., El-Khoueiry, A., & Galle, P. R. (2020). Diagnosis and management of toxicities of immune checkpoint inhibitors in hepatocellular carcinoma. Journal of hepatology, 72(2), 320–341. https://doi.org/10.1016/j.jhep.2019.10.021

Article  PubMed  PubMed Central  Google Scholar 

Alsaab, H. O., Sau, S., Alzhrani, R., Tatiparti, K., Bhise, K., Kashaw, S. K., & Iyer, A. K. (2017). PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Frontiers in Pharmacology, 8, 561. https://doi.org/10.3389/fphar.2017.00561

Article  PubMed  PubMed Central  Google Scholar 

Okusaka, T., & Ikeda, M. (2018). Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. ESMO open, 3(Suppl 1), e000455. https://doi.org/10.1136/esmoopen-2018-000455

Article  PubMed  PubMed Central  Google Scholar 

Jabbarzadeh Kaboli, P., Shabani, S., Sharma, S., Partovi Nasr, M., Yamaguchi, H., & Hung, M.-C. (2022). Shedding light on triple-negative breast cancer with Trop2-targeted antibody-drug conjugates. American Journal of Cancer Research, 12(4), 1671–1685.

PubMed  PubMed Central  Google Scholar 

Patil, N. S., Nabet, B. Y., Müller, S., Koeppen, H., Zou, W., Giltnane, J., …Shames, D. S. (2022). Intratumoral plasma cells predict outcomes to PD-L1 blockade in non-small cell lung cancer. Cancer Cell, 40(3), 289−300.e4. https://doi.org/10.1016/j.ccell.2022.02.002

Tang, Q., Chen, Y., Li, X., Long, S., Shi, Y., Yu, Y., …Wang, S. (2022). The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Frontiers in Immunology, 13, 964442. https://doi.org/10.3389/fimmu.2022.964442

Jiang, H., Ni, H., Zhang, P., Guo, X., Wu, M., Shen, H., …Liu, J. (2021). PD-L1/LAG-3 bispecific antibody enhances tumor-specific immunity. Oncoimmunology, 10(1), 1943180. https://doi.org/10.1080/2162402X.2021.1943180

Sanborn, R. E., Pishvaian, M. J., Callahan, M. K., Weise, A., Sikic, B. I., Rahma, O., …Keler, T. (2022). Safety, tolerability and efficacy of agonist anti-CD27 antibody (varlilumab) administered in combination with anti-PD-1 (nivolumab) in advanced solid tumors. Journal for Immunotherapy of Cancer, 10(8). https://doi.org/10.1136/jitc-2022-005147

Cercek, A., Lumish, M., Sinopoli, J., Weiss, J., Shia, J., Lamendola-Essel, M., …Diaz, L. A. J. (2022). PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. The New England Journal of Medicine, 386(25), 2363–2376. https://doi.org/10.1056/NEJMoa2201445

Huang, Q., Zheng, Y., Gao, Z., Yuan, L., Sun, Y., & Chen, H. (2021). Comparative efficacy and safety of PD-1/PD-L1 inhibitors for patients with solid tumors: A systematic review and Bayesian network meta-analysis. Journal of Cancer, 12(4), 1133–1143. https://doi.org/10.7150/jca.49325

Article  PubMed  PubMed Central  Google Scholar 

Herbst, R. S., Soria, J.-C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., …Hodi, F. S. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515(7528), 563–567. https://doi.org/10.1038/nature14011

Weinstock, C., Khozin, S., Suzman, D., Zhang, L., Tang, S., Wahby, S., …Pazdur, R. (2017). U.S. food and drug administration approval summary: Atezolizumab for metastatic non-small cell lung cancer. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 23(16), 4534–4539. https://doi.org/10.1158/1078-0432.CCR-17-0540

Ribeiro, R., Carvalho, M. J., Goncalves, J., & Moreira, J. N. (2022). Immunotherapy in triple-negative breast cancer: Insights into tumor immune landscape and therapeutic opportunities. Frontiers in Molecular Biosciences, 9, 903065. https://doi.org/10.3389/fmolb.2022.903065

Article  PubMed  PubMed Central  Google Scholar 

Emens, L. A., Adams, S., Cimino-Mathews, A., Disis, M. L., Gatti-Mays, M. E., Ho, A. Y., …Litton, J. K. (2021). Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of breast cancer. Journal for Immunotherapy of Cancer, 9(8). https://doi.org/10.1136/jitc-2021-002597

Faivre, S., Rimassa, L., & Finn, R. S. (2020). Molecular therapies for HCC: Looking outside the box. Journal of Hepatology, 72(2), 342–352. https://doi.org/10.1016/j.jhep.2019.09.010

Article  PubMed  Google Scholar 

Jin, H., Qin, S., He, J., Xiao, J., Li, Q., Mao, Y., & Zhao, L. (2022). New insights into checkpoint inhibitor immunotherapy and its combined therapies in hepatocellular carcinoma: From mechanisms to clinical trials. International Journal of Biological Sciences, 18(7), 2775–2794. https://doi.org/10.7150/ijbs.70691

Article  PubMed  PubMed Central  Google Scholar 

Feng, D., Hui, X., Shi-Chun, L., Yan-Hua, B., Li, C., Xiao-Hui, L., & Jie-Yu, Y. (2017). Initial experience of anti-PD1 therapy with nivolumab in advanced hepatocellular carcinoma. Oncotarget, 8(57), 96649–96655. https://doi.org/10.18632/oncotarget.20029

Article  PubMed  PubMed Central  Google Scholar 

El-Khoueiry, A. B., Sangro, B., Yau, T., Crocenzi, T. S., Kudo, M., Hsu, C., …Melero, I. (2017). Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet (London, England), 389(10088), 2492–2502. https://doi.org/10.1016/S0140-6736(17)31046-2

Bally, A. P. R., Austin, J. W., & Boss, J. M. (2016). Genetic and epigenetic regulation of PD-1 expression. Journal of immunology (Baltimore, Md. : 1950), 196(6), 2431–2437. https://doi.org/10.4049/jimmunol.1502643

Article  PubMed  Google Scholar 

Liu, W., Jin, H., Chen, T., Zhang, G., Lai, S., & Liu, G. (2020). Investigating the role of the N-Terminal Loop of PD-1 in binding process between PD-1 and nivolumab via molecular dynamics simulation. Frontiers in Molecular Biosciences, 7, 574759. https://doi.org/10.3389/fmolb.2020.574759

Article  PubMed  PubMed Central  Google Scholar 

Zak, K. M., Kitel, R., Przetocka, S., Golik, P., Guzik, K., Musielak, B., …Holak, T. A. (2015). Structure of the complex of human programmed death 1, PD-1, and Its Ligand PD-L1. Structure (London, England : 1993), 23(12), 2341–2348. https://doi.org/10.1016/j.str.2015.09.010

Chen, D., Tan, S., Zhang, H., Wang, H., He, W., Shi, R., …Gao, G. F. (2019). The FG loop of PD-1 serves as a “Hotspot” for therapeutic monoclonal antibodies in tumor immune checkpoint therapy. iScience, 14, 113–124. https://doi.org/10.1016/j.isci.2019.03.017

Qi, T., Fu, J., Zhang, W., Cui, W., Xu, X., Yue, J., …Tian, X. (2020). Mutation of PD-1 immune receptor tyrosine-based switch motif (ITSM) enhances the antitumor activity of cytotoxic T cells. Translational Cancer Research, 9(11), 6811–6819. https://doi.org/10.21037/tcr-20-2118

Patsoukis, N., Duke-Cohan, J. S., Chaudhri, A., Aksoylar, H.-I., Wang, Q., Council, A., …Boussiotis, V. A. (2020). Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Communications Biology, 3(1), 128. https://doi.org/10.1038/s42003-020-0845-0

Lázár-Molnár, E., Yan, Q., Cao, E., Ramagopal, U., Nathenson, S. G., & Almo, S. C. (2008). Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2. Proceedings of the National Academy of Sciences of the United States of America, 105(30), 10483–10488. https://doi.org/10.1073/pnas.0804453105

Article  ADS  PubMed  PubMed Central  Google Scholar 

Shinohara, T., Taniwaki, M., Ishida, Y., Kawaichi, M., & Honjo, T. (1994). Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics, 23(3), 704–706. https://doi.org/10.1006/geno.1994.1562

Article  PubMed  Google Scholar 

Zhao, Q., Guo, J., Zhao, Y., Shen, J., Kaboli, P. J., Xiang, S., …Xiao, Z. (2020). Comprehensive assessment of PD-L1 and PD-L2 dysregulation in gastrointestinal cancers. Epigenomics, 12(24), 2155–2171. https://doi.org/10.2217/epi-2020-0093

Li, D., Xiang, S., Shen, J., Xiao, M., Zhao, Y., Wu, X., …Wen, Q. (2020). Comprehensive understanding of B7 family in gastric cancer: expression profile, association with clinicopathological parameters and downstream targets. International Journal of Biological Sciences, 16(4), 568–582. https://doi.org/10.7150/ijbs.39769

Wang, H., Yao, H., Li, C., Shi, H., Lan, J., Li, Z., …Xu, J. (2019). HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nature Chemical Biology, 15(1), 42–50. https://doi.org/10.1038/s41589-018-0161-x

Chen, Y., Liu, P., Gao, F., Cheng, H., Qi, J., & Gao, G. F. (2010). A dimeric structure of PD-L1: Functional units or evolutionary relics? Protein Cell, 1(2), 153–160. https://doi.org/10.1007/s13238-010-0022-1

Article  PubMed  PubMed Central  Google Scholar 

Okazaki, T., & Honjo, T. (2006). The PD-1-PD-L pathway in immunological tolerance. Trends in Immunology, 27(4), 195–201. https://doi.org/10.1016/j.it.2006.02.001

Article  PubMed  Google Scholar 

Philips, E. A., Garcia-España, A., Tocheva, A. S., Ahearn, I. M., Adam, K. R., Pan, R., …Kong, X.-P. (2020). The structural features that distinguish PD-L2 from PD-L1 emerged in placental mammals. The Journal of Biological Chemistry, 295(14), 4372–4380. https://doi.org/10.1074/jbc.AC119.011747

Wang, S., Bajorath, J., Flies, D. B., Dong, H., Honjo, T., & Chen, L. (2003). Molecular modeling and functional mapping of B7–H1 and B7-DC uncouple costimulatory function from PD-1 interaction. The Journal of Experimental Medicine, 197(9), 1083–1091. https://doi.org/10.1084/jem.20021752

Article  PubMed  PubMed Central  Google Scholar 

Gainza, P., Wehrle, S., VanHall-Beauvais, A., Marchand, A., Scheck, A., Harteveld, Z., …Correia, B. E. (2023). De novo design of protein interactions with learned surface fingerprints. Nature, 617(7959), 176–184. https://doi.org/10.1038/s41586-023-05993-x

Lin, D. Y.-W., Tanaka, Y., Iwasaki, M., Gittis, A. G., Su, H.-P., Mikami, B., …Garboczi, D. N. (2008). The PD-1/PD-L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors. Proceedings of the National Academy of Sciences of the United States of America, 105(8), 3011–3016. https://doi.org/10.1073/pnas.0712278105

Almahmoud, S., & Zhong, H. A. (2019). Molecular modeling studies on the binding mode of the PD-1/PD-L1 complex inhibitors. International Journal of Molecular Sciences, 20(18). https://doi.org/10.3390/ijms20184654

Lee, H. T., Lee, J. Y., Lim, H., Lee, S. H., Moon, Y. J., Pyo, H. J., …Heo, Y.-S. (2017). Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Scientific Reports, 7(1), 5532. https://doi.org/10.1038/s41598-017-06002-8

Tan, S., Zhang, H., Chai, Y., Song, H., Tong, Z., Wang, Q., …Yan, J. (2017). An unexpected N-terminal loop in PD-1 dominates binding by nivolumab. Nature Communications, 8, 14369. https://doi.org/10.1038/ncomms14369

Hao, G., Wesolowski, J. S., Jiang, X., Lauder, S., & Sood, V. D. (2015). Epitope characterization of an anti-PD-L1 antibody using orthogonal approaches. Journal of Molecular Recognition: JMR, 28(4), 269–276. https://doi.org/10.1002/jmr.2418

Article  PubMed  Google Scholar 

Magarkar, A., Schnapp, G., Apel, A.-K., Seeliger, D., & Tautermann, C. S. (2019). Enhancing drug residence time by shielding of intra-protein hydrogen bonds: A case study on CCR2 antagonists. ACS Medicinal Chemistry Letters, 10(3), 324–328. https://doi.org/10.1021/acsmedchemlett.8b00590

Article  PubMed  PubMed Central  Google Scholar 

Lee, J. Y., Lee, H. T., Shin, W., Chae, J., Choi, J., Kim, S. H., …Heo, Y.-S. (2016). Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nature Communications, 7, 13354. https://doi.org/10.1038/ncomms13354

Bangarh, R., Khatana, C., Kaur, S., Sharma, A., Kaushal, A., Siwal, S. S., …Saini, A. K. (2023). Aberrant protein glycosylation: Implications on diagnosis and Immunotherapy. Biotechnology Advances, 66, 108149. https://doi.org/10.1016/j.biotechadv.2023.108149

Hu, M., Zhang, R., Yang, J., Zhao, C., Liu, W., Huang, Y., …Tang, J. (2023). The role of N-glycosylation modification in the pathogenesis of liver cancer. Cell Death & Disease, 14(3), 222. https://doi.org/10.1038/s41419-023-05733-z

Liu, Y., Lan, L., Li, Y., Lu, J., He, L., Deng, Y., …Lu, B. (2022). N-glycosylation stabilizes MerTK and promotes hepatocellular carcinoma tumor growth. Redox Biology, 54, 102366. https://doi.org/10.1016/j.redox.2022.102366

Morales-Betanzos, C. A., Lee, H., Gonzalez Ericsson, P. I., Balko, J. M., Johnson, D. B., Zimmerman, L. J., & Liebler, D. C. (2017). Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma. Molecular & Cellular Proteomics: MCP, 16(10), 1705–1717. https://doi.org/10.1074/mcp.RA117.000037

Article  PubMed Central  Google Scholar 

D’Arrigo, P., Russo, M., Rea, A., Tufano, M., Guadagno, E., DelBasso De Caro, M. L., …Romano, S. (2017). A regulatory role for the co-chaperone FKBP51s in PD-L1 expression in glioma. Oncotarget, 8(40), 68291–68304. https://doi.org/10.18632/oncotarget.19309

Maher, C. M., Thomas, J. D., Haas, D. A., Longen, C. G., Oyer, H. M., Tong, J. Y., & Kim, F. J. (2018). Small-Molecule Sigma1 modulator induces autophagic degradation of PD-L1. Molecular Cancer Research: MCR, 16(2), 243–255. https://doi.org/10.1158/1541-7786.MCR-17-0166

Article  PubMed  Google Scholar 

Duan, X., Xie, Y., Yu, J., Hu, X., Liu, Z., Li, N., …Wang, Y. (2022). MCT4/Lactate promotes PD-L1 glycosylation in triple-negative breast cancer cells. Journal of Oncology, 2022, 3659714. https://doi.org/10.1155/2022/3659714

Li, C.-W., Lim, S.-O., Xia, W., Lee, H.-H., Chan, L.-C., Kuo, C.-W., …Hung, M.-C. (2016). Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications, 7, 12632. https://doi.org/10.1038/ncomms12632

Ou-Yang, F., Li, C.-L., Chen, C.-C., Shen, Y.-C., Moi, S.-H., Luo, C.-W., …Hung, M.-C. (2022). De-glycosylated membrane PD-L1 in tumor tissues as a biomarker for responsiveness to atezolizumab (Tecentriq) in advanced breast cancer patients. American Journal of Cancer Research, 12(1), 123–137

Goletz, C., Lischke, T., Harnack, U., Schiele, P., Danielczyk, A., Rühmann, J., & Goletz, S. (2018). Glyco-engineered anti-human programmed death-Ligand 1 antibody mediates stronger CD8 T cell activation than its normal glycosylated and non-glycosylated counterparts. Frontiers in Immunology, 9, 1614. https://doi.org/10.3389/fimmu.2018.01614

Article  PubMed  PubMed Central  Google Scholar 

Cohen Saban, N., Yalin, A., Landsberger, T., Salomon, R., Alva, A., Feferman, T., …Dahan, R. (2023). Fc glycoengineering of a PD-L1 antibody harnesses Fcγ receptors for increased antitumor efficacy. Science Immunology, 8(81), eadd8005. https://doi.org/10.1126/sciimmunol.add8005

Okada, M., Chikuma, S., Kondo, T., Hibino, S., Machiyama, H., Yokosuka, T., …Yoshimura, A. (2017). Blockage of core fucosylation reduces cell-surface expression of PD-1 and promotes anti-tumor immune responses of T cells. Cell Reports, 20(5), 1017–1028. https://doi.org/10.1016/j.celrep.2017.07.027

Sun, L., Li, C.-W., Chung, E. M., Yang, R., Kim, Y.-S., Park, A. H., …Hung, M.-C. (2020). Targeting glycosylated PD-1 induces potent antitumor immunity. Cancer Research, 80(11), 2298–2310. https://doi.org/10.1158/0008-5472.CAN-19-3133

Zhou, S., Zhu, J., Xu, J., Gu, B., Zhao, Q., Luo, C., …Cheng, X. (2022). Anti-tumour potential of PD-L1/PD-1 post-translational modifications. Immunology, 167(4), 471–481. https://doi.org/10.1111/imm.13573

Wang, M., Wang, J., Wang, R., Jiao, S., Wang, S., Zhang, J., & Zhang, M. (2019). Identification of a monoclonal antibody that targets PD-1 in a manner requiring PD-1 Asn58 glycosylation. Communications Biology, 2, 392. https://doi.org/10.1038/s42003-019-0642-9

Article  PubMed 

留言 (0)

沒有登入
gif