TPN10475 Constrains Effector T Lymphocytes Activation and Attenuates Experimental Autoimmune Encephalomyelitis Pathogenesis by Facilitating TGF-β Signal Transduction

Bierie B, Chung CH, Parker JS, Stover DG, Cheng N, Chytil A, Aakre M, Shyr Y, Moses HL (2009) Abrogation of TGF-beta signaling enhances chemokine production and correlates with prognosis in human breast cancer. J Clin Invest 119:1571–1582

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bright JJ, Sriram S (1998) TGF-beta inhibits IL-12-induced activation of Jak-STAT pathway in T lymphocytes. J Immunol (Baltimore Md: 1950) 161:1772–1777

Article  CAS  Google Scholar 

Cekanaviciute E, Dietrich HK, Axtell RC, Williams AM, Egusquiza R, Wai KM, Koshy AA, Buckwalter MS (2014) Astrocytic TGF-beta signaling limits inflammation and reduces neuronal damage during central nervous system Toxoplasma infection. J Immunol 193:139–149

Article  CAS  PubMed  Google Scholar 

Chapman NM, Boothby MR, Chi H (2020) Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol 20:55–70

Article  CAS  PubMed  Google Scholar 

Codarri L, Gyülvészi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B (2011) RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat Immunol 12:560–567

Article  CAS  PubMed  Google Scholar 

Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164:1079–1106

Article  CAS  PubMed  PubMed Central  Google Scholar 

Correale J, Gaitan MI, Ysrraelit MC, Fiol MP (2017) Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain 140:527–546

PubMed  Google Scholar 

Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558

Article  CAS  PubMed  Google Scholar 

Derynck R, Budi EH (2019) Specificity, versatility, and control of TGF-beta family signaling. Sci Signal 12:eaav5183

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dittel BN (2008) CD4 T cells: balancing the coming and going of autoimmune-mediated inflammation in the CNS. Brain Behav Immun 22:421–430

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dobson R, Giovannoni G (2019) Multiple sclerosis - a review. Eur J Neurol 26:27–40

Article  CAS  PubMed  Google Scholar 

Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, Li Z, Wu Z, Pei G (2009) MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol 10:1252–1259

Article  CAS  PubMed  Google Scholar 

Duscha A et al (2020) Propionic Acid shapes the multiple sclerosis Disease Course by an Immunomodulatory mechanism. Cell 180:1067-1080e1016

Article  CAS  PubMed  Google Scholar 

Feng X, Li X, Liu N, Hou N, Sun X, Liu Y (2022) Glutaminolysis and CD4(+) T-cell metabolism in autoimmunity: from pathogenesis to therapy prospects. Front Immunol 13:986847

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghoreschi K et al (2010) Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature 467:967–971

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Gorelik L (2002) Mechanism of transforming growth factor β–induced inhibition of T helper type 1 differentiation. J Exp Med 195:1499–1505

Article  CAS  PubMed  PubMed Central  Google Scholar 

Heng AHS, Han CW, Abbott C, McColl SR, Comerford I (2022) Chemokine-Driven Migration of pro-inflammatory CD4(+) T cells in CNS autoimmune disease. Front Immunol 13:817473

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hohlfeld R, Dornmair K, Meinl E, Wekerle H (2016) The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4 + T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol 15:198–209

Article  CAS  PubMed  Google Scholar 

Hoppmann N, Graetz C, Paterka M, Poisa-Beiro L, Larochelle C, Hasan M, Lill CM, Zipp F, Siffrin V (2015) New candidates for CD4 T cell pathogenicity in experimental neuroinflammation and multiple sclerosis. Brain 138:902–917

Article  PubMed  Google Scholar 

Kamali AN, Noorbakhsh SM, Hamedifar H, Jadidi-Niaragh F, Yazdani R, Bautista JM, Azizi G (2019) A role for Th1-like Th17 cells in the pathogenesis of inflammatory and autoimmune disorders. Mol Immunol 105:107–115

Article  CAS  PubMed  Google Scholar 

Kipp M, Nyamoya S, Hochstrasser T, Amor S (2017) Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol 27:123–137

Article  PubMed  PubMed Central  Google Scholar 

Krishnarajah S, Becher B (2022) T(H) cells and cytokines in Encephalitogenic disorders. Front Immunol 13:822919

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee PW, Severin ME, Lovett-Racke AE (2017) TGF-beta regulation of encephalitogenic and regulatory T cells in multiple sclerosis. Eur J Immunol 47:446–453

Article  CAS  PubMed  PubMed Central  Google Scholar 

Legroux L, Arbour N (2015) Multiple sclerosis and T lymphocytes: an Entangled Story. J Neuroimmune Pharmacol 10:528–546

Article  PubMed  PubMed Central  Google Scholar 

Li X, Li TT, Zhang XH, Hou LF, Yang XQ, Zhu FH, Tang W, Zuo JP (2013) Artemisinin analogue SM934 ameliorates murine experimental autoimmune encephalomyelitis through enhancing the expansion and functions of regulatory T cell. PLoS ONE 8:e74108

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Liu G, Jiang X, Han M, Lv J, Zhuang W, Xie L, Zhang Y, Wang C, Saimaier K, Yang J, Shen J, Li N, Du C (2022) Artemisinin derivative TPN10466 suppresses immune cell migration and Th1/Th17 differentiation to ameliorate disease severity in experimental autoimmune encephalomyelitis. Cell Immunol 373:104500

Article  CAS  PubMed  Google Scholar 

Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4(+)T cells: differentiation and functions. Clin Dev Immunol 2012:925135

Article  PubMed  PubMed Central  Google Scholar 

Lyons AB, Blake SJ, Doherty KV (2013) Flow cytometric analysis of cell division by dilution of CFSE and related dyes. Curr Protoc Cytom Chap 9:9 (11 11–19 11 12)

Google Scholar 

Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 14:183–193

Article  CAS  PubMed  Google Scholar 

Oh SA, Li MO (2013) TGF-beta: guardian of T cell function. J Immunol 191:3973–3979

Article  CAS  PubMed  Google Scholar 

Olek MJ (2021) Multiple sclerosis. Ann Intern Med 174:ITC81–ITC96

Article  PubMed  Google Scholar 

Sun X, Cui Y, Feng H, Liu H, Liu X (2019) TGF-beta signaling controls Foxp3 methylation and T reg cell differentiation by modulating Uhrf1 activity. J Exp Med 216:2819–2837

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takeuchi H (2014) Midkine and multiple sclerosis. Br J Pharmacol 171:931–935

Article  CAS  PubMed  PubMed Central  Google Scholar 

Takimoto T, Wakabayashi Y, Sekiya T, Inoue N, Morita R, Ichiyama K, Takahashi R, Asakawa M, Muto G, Mori T, Hasegawa E, Saika S, Hara T, Nomura M, Yoshimura A (2010) Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development. J Immunol 185:842–855

Article  CAS  PubMed  Google Scholar 

Tu E, Chia CPZ, Chen W, Zhang D, Park SA, Jin W, Wang D, Alegre ML, Zhang YE, Sun L, Chen W (2018) T cell receptor-regulated TGF-beta type I receptor expression determines T cell quiescence and activation. Immunity 48:745-759e746

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wingerchuk DM, Carter JL (2014) Multiple sclerosis: current and emerging disease-modifying therapies and treatment strategies. Mayo Clin Proc 89:225–240

Article  PubMed  Google Scholar 

Wu Y, Tang W, Zuo J (2016) Development of artemisinin drugs in the treatment of autoimmune diseases. Sci Bull 61:37–41

留言 (0)

沒有登入
gif