Targeting EphA2: a promising strategy to overcome chemoresistance and drug resistance in cancer

Ferlay J, Colombet M, Soerjomataram I et al (2021) Cancer statistics for the year 2020: an overview. Int J cancer. https://doi.org/10.1002/ijc.33588

Article  PubMed  Google Scholar 

Desai A, Scheckel C, Jensen CJ et al (2022) Trends in prices of drugs used to treat metastatic non-small cell lung cancer in the US from 2015 to 2020. JAMA Netw open 5:e2144923. https://doi.org/10.1001/jamanetworkopen.2021.44923

Article  PubMed  PubMed Central  Google Scholar 

Peng L, Wang Z, Stebbing J, Yu Z (2022) Novel immunotherapeutic drugs for the treatment of lung cancer. Curr Opin Oncol 34:89–94. https://doi.org/10.1097/CCO.0000000000000800

Article  CAS  PubMed  Google Scholar 

Xu M, Peng R, Min Q et al (2022) Bisindole natural products: a vital source for the development of new anticancer drugs. Eur J Med Chem 243:114748. https://doi.org/10.1016/j.ejmech.2022.114748

Article  CAS  PubMed  Google Scholar 

Zigrossi A, Hong LK, Ekyalongo RC et al (2022) SELENOF is a new tumor suppressor in breast cancer. Oncogene 41:1263–1268. https://doi.org/10.1038/s41388-021-02158-w

Article  CAS  PubMed  Google Scholar 

Szostakowska M, Trębińska-Stryjewska A, Grzybowska EA, Fabisiewicz A (2019) Resistance to endocrine therapy in breast cancer: molecular mechanisms and future goals. Breast Cancer Res Treat 173:489–497. https://doi.org/10.1007/s10549-018-5023-4

Article  PubMed  Google Scholar 

Bukowski K, Kciuk M, Kontek R (2020) Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. https://doi.org/10.3390/ijms21093233

Article  PubMed  PubMed Central  Google Scholar 

Alexandrov LB, Nik-Zainal S, Wedge DC et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421. https://doi.org/10.1038/nature12477

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu C, Guan X, Zhang X et al (2022) Targeting KRAS mutant cancers: from druggable therapy to drug resistance. Mol Cancer 21:159. https://doi.org/10.1186/s12943-022-01629-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vachtenheim J, Ondrušová L (2021) Many distinct ways lead to drug resistance in BRAF- and NRAS-mutated melanomas. Life (Basel, Switzerland). https://doi.org/10.3390/life11050424

Article  PubMed  Google Scholar 

Li Q-H, Wang Y-Z, Tu J et al (2020) Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterol Rep 8:179–191. https://doi.org/10.1093/gastro/goaa026

Article  Google Scholar 

Nussinov R, Tsai C-J, Jang H (2021) Anticancer drug resistance: an update and perspective. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother 59:100796. https://doi.org/10.1016/j.drup.2021.100796

Article  CAS  Google Scholar 

Kinch MS, Moore M-B, Harpole DHJ (2003) Predictive value of the EphA2 receptor tyrosine kinase in lung cancer recurrence and survival. Clin cancer Res an Off J Am Assoc Cancer Res 9:613–618

CAS  Google Scholar 

Garcia-Monclús S, López-Alemany R, Almacellas-Rabaiget O et al (2018) EphA2 receptor is a key player in the metastatic onset of Ewing sarcoma. Int J Cancer 143:1188–1201. https://doi.org/10.1002/ijc.31405

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirai H, Maru Y, Hagiwara K et al (1987) A novel putative tyrosine kinase receptor encoded by the EPH gene. Science 238:1717–1720. https://doi.org/10.1126/science.2825356

Article  ADS  CAS  PubMed  Google Scholar 

Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10:165–180. https://doi.org/10.1038/nrc2806

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahoo AR, Buck M (2021) Structural and functional insights into the transmembrane domain association of Eph receptors. Int J Mol Sci. https://doi.org/10.3390/ijms22168593

Article  PubMed  PubMed Central  Google Scholar 

Liang LY, Patel O, Janes PW et al (2019) Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene 38:6567–6584. https://doi.org/10.1038/s41388-019-0931-2

Article  CAS  PubMed  Google Scholar 

Himanen JP, Rajashankar KR, Lackmann M et al (2001) Crystal structure of an Eph receptor-ephrin complex. Nature 414:933–938. https://doi.org/10.1038/414933a

Article  ADS  CAS  PubMed  Google Scholar 

Ellis C, Kasmi F, Ganju P et al (1996) A juxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Oncogene 12:1727–1736

CAS  PubMed  Google Scholar 

Holland SJ, Gale NW, Gish GD et al (1997) Juxtamembrane tyrosine residues couple the Eph family receptor EphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J 16:3877–3888. https://doi.org/10.1093/emboj/16.13.3877

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schultz J, Ponting CP, Hofmann K, Bork P (1997) SAM as a protein interaction domain involved in developmental regulation. Protein Sci 6:249–253. https://doi.org/10.1002/pro.5560060128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stapleton D, Balan I, Pawson T, Sicheri F (1999) The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol 6:44–49. https://doi.org/10.1038/4917

Article  CAS  PubMed  Google Scholar 

Thanos CD, Goodwill KE, Bowie JU (1999) Oligomeric structure of the human EphB2 receptor SAM domain. Science 283:833–836. https://doi.org/10.1126/science.283.5403.833

Article  ADS  CAS  PubMed  Google Scholar 

Hock B, Böhme B, Karn T et al (1998) PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the RAS-binding protein AF6 depends on the kinase activity of the receptor. Proc Natl Acad Sci USA 95:9779–9784. https://doi.org/10.1073/pnas.95.17.9779

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Torres R, Firestein BL, Dong H et al (1998) PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21:1453–1463. https://doi.org/10.1016/s0896-6273(00)80663-7

Article  CAS  PubMed  Google Scholar 

Gong J, Körner R, Gaitanos L, Klein R (2016) Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance. J Cell Biol 214:35–44. https://doi.org/10.1083/jcb.201601085

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pasquale EB (2016) Exosomes expand the sphere of influence of Eph receptors and ephrins. J Cell Biol 214:5–7. https://doi.org/10.1083/jcb.201606074

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oricchio E, Nanjangud G, Wolfe AL et al (2011) The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma. Cell 147:554–564. https://doi.org/10.1016/j.cell.2011.09.035

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee J, Nakajima-Koyama M, Sone M et al (2015) Secreted ephrin receptor A7 promotes somatic cell reprogramming by inducing ERK activity reduction. Stem Cell Rep 5:480–489. https://doi.org/10.1016/j.stemcr.2015.09.001

Article  CAS  Google Scholar 

Sato S, Vasaikar S, Eskaros A et al (2019) EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling. JCI Insight. https://doi.org/10.1172/jci.insight.132447

Article  PubMed  PubMed Central  Google Scholar 

Aasheim HC, Munthe E, Funderud S et al (2000) A splice variant of human ephrin-A4 encodes a soluble molecule that is secreted by activated human B lymphocytes. Blood 95:221–230. https://doi.org/10.1182/blood.v95.1.221.001k01_221_230

Article  CAS  PubMed  Google Scholar 

Wykosky J, Palma E, Gibo DM et al (2008) Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene 27:7260–7273. https://doi.org/10.1038/onc.2008.328

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alford S, Watson-Hurthig A, Scott N et al (2010) Soluble ephrin a1 is necessary for the growth of HeLa and SK-BR3 cells. Cancer Cell Int 10:1–13. https://doi.org/10.1186/1475-2867-10-41

Article 

留言 (0)

沒有登入
gif