Deconvolution at the single-cell level reveals ovarian cell-type-specific transcriptomic changes in PCOS

Joham AE, Norman RJ, Stener-Victorin E, Legro RS, Franks S, Moran LJ, Boyle J, Teede HJ. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022;10:668–80.

Article  CAS  PubMed  Google Scholar 

Dapas M, Dunaif A. Deconstructing a syndrome: genomic insights into PCOS causal mechanisms and classification. Endocr Rev. 2022;43:927–65.

Article  PubMed  PubMed Central  Google Scholar 

Dewailly D, Robin G, Peigne M, Decanter C, Pigny P, Catteau-Jonard S. Interactions between androgens, FSH, anti-mullerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 2016;22:709–24.

Article  CAS  PubMed  Google Scholar 

Nelson LR, Bulun SE. Estrogen production and action. J Am Acad Dermatol. 2001;45:116–24.

Article  Google Scholar 

Fan X, Bialecka M, Moustakas I, Lam E, Torrens-Juaneda V, Borggreven NV, Trouw L, Louwe LA, Pilgram GSK, Mei H, et al. Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat Commun. 2019;10:3164.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Fiorentino G, Cimadomo D, Innocenti F, Soscia D, Vaiarelli A, Ubaldi FM, Gennarelli G, Garagna S, Rienzi L, Zuccotti M. Biomechanical forces and signals operating in the ovary during folliculogenesis and their dysregulation: implications for fertility. Hum Reprod Update. 2023;29:1–23.

Article  CAS  PubMed  Google Scholar 

Jiang Y, Gao X, Liu Y, Yan X, Shi H, Zhao R, Chen ZJ, Gao F, Zhao H, Zhao S. Cellular atlases of ovarian microenvironment alterations by diet and genetically-induced obesity. Sci China Life Sci. 2024;67:51–66.

Article  CAS  PubMed  Google Scholar 

Siddiqui S, Mateen S, Ahmad R, Moin S. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS). J Assist Reprod Genet. 2022;39:2439–73.

Article  PubMed  PubMed Central  Google Scholar 

Liao B, Qi X, Yun C, Qiao J, Pang Y. Effects of Androgen excess-related metabolic disturbances on Granulosa cell function and Follicular Development. Front Endocrinol (Lausanne). 2022;13:815968.

Article  PubMed  Google Scholar 

Mao Z, Li T, Zhao H, Qin Y, Wang X, Kang Y. Identification of epigenetic interactions between microRNA and DNA methylation associated with polycystic ovarian syndrome. J Hum Genet. 2021;66:123–37.

Article  CAS  PubMed  Google Scholar 

Li J, Chen H, Gou M, Tian C, Wang H, Song X, Keefe DL, Bai X, Liu L. Molecular features of polycystic ovary syndrome revealed by Transcriptome Analysis of Oocytes and Cumulus cells. Front Cell Dev Biol. 2021;9:735684.

Article  PubMed  PubMed Central  Google Scholar 

Zhao R, Jiang Y, Zhao S, Zhao H. Multiomics Analysis Reveals Molecular Abnormalities in Granulosa cells of women with polycystic ovary syndrome. Front Genet. 2021;12:648701.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rotterdam EA-SPCWG. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.

Article  Google Scholar 

Kinnear HM, Tomaszewski CE, Chang FL, Moravek MB, Xu M, Padmanabhan V, Shikanov A. The ovarian stroma as a new frontier. Reproduction. 2020;160:R25–R39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Field SL, Dasgupta T, Cummings M, Orsi NM. Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol Reprod Dev. 2014;81:284–314.

Article  CAS  PubMed  Google Scholar 

Ni D, Zhou H, Wang P, Xu F, Li C. Visualizing macrophage phenotypes and polarization in diseases: from biomarkers to Molecular Probes. Phenomics. 2023;3:613–38.

Article  PubMed  Google Scholar 

Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian Follicular Theca Cell Recruitment, differentiation, and impact on fertility: 2017 update. Endocr Rev. 2018;39:1–20.

Article  PubMed  Google Scholar 

Cohen-Fredarow A, Tadmor A, Raz T, Meterani N, Addadi Y, Nevo N, Solomonov I, Sagi I, Mor G, Neeman M, Dekel N. Ovarian dendritic cells act as a double-edged pro-ovulatory and anti-inflammatory sword. Mol Endocrinol. 2014;28:1039–54.

Article  PubMed  PubMed Central  Google Scholar 

Duffy DM, Ko C, Jo M, Brannstrom M, Curry TE. Ovulation: parallels with inflammatory processes. Endocr Rev. 2019;40:369–416.

Article  PubMed  Google Scholar 

Zhang C, Ma J, Wang W, Sun Y, Sun K. Lysyl oxidase blockade ameliorates anovulation in polycystic ovary syndrome. Hum Reprod. 2018;33:2096–106.

Article  CAS  PubMed  Google Scholar 

Young JM, McNeilly AS. Theca: the forgotten cell of the ovarian follicle. Reproduction. 2010;140:489–504.

Article  CAS  PubMed  Google Scholar 

Chen F, Wang Y, He J, Chen L, Xue G, Zhao Y, Peng Y, Smith C, Zhang J, Chen J, Xie P. Molecular Mechanisms of Spawning Habits for the Adaptive Radiation of Endemic East Asian Cyprinid Fishes. Research (Wash D C) 2022, 2022:9827986.

Goldman S, Shalev E. MMPS and TIMPS in ovarian physiology and pathophysiology. Front Biosci. 2004;9:2474–83.

Article  CAS  PubMed  Google Scholar 

Li X, Hu S, Zhu Q, Yao G, Yao J, Li J, Wang Y, Ding Y, Qi J, Xu R, et al. Addressing the role of 11beta-hydroxysteroid dehydrogenase type 1 in the development of polycystic ovary syndrome and the putative therapeutic effects of its selective inhibition in a preclinical model. Metabolism. 2021;119:154749.

Article  CAS  PubMed  Google Scholar 

Di F, Liu J, Li S, Yao G, Hong Y, Chen ZJ, Li W, Du Y. ATF4 contributes to Ovulation via regulating COX2/PGE2 expression: a potential role of ATF4 in PCOS. Front Endocrinol (Lausanne). 2018;9:669.

Article  PubMed  Google Scholar 

Tong C, Wu Y, Zhang L, Yu Y. Insulin resistance, autophagy and apoptosis in patients with polycystic ovary syndrome: Association with PI3K signaling pathway. Front Endocrinol (Lausanne). 2022;13:1091147.

Article  PubMed  Google Scholar 

Jafari M, Ghadami E, Dadkhah T, Akhavan-Niaki H. PI3k/AKT signaling pathway: erythropoiesis and beyond. J Cell Physiol. 2019;234:2373–85.

Article  CAS  PubMed  Google Scholar 

Hu CL, Cowan RG, Harman RM, Quirk SM. Cell cycle progression and activation of akt kinase are required for insulin-like growth factor I-mediated suppression of apoptosis in granulosa cells. Mol Endocrinol. 2004;18:326–38.

Article  CAS  PubMed  Google Scholar 

Rabah HM, Mohamed DA, Mariah RA, Abd El-Khalik SR, Khattab HA, AbuoHashish NA, Abdelsattar AM, Raslan MA, Farghal EE, Eltokhy AK. Novel insights into the synergistic effects of selenium nanoparticles and metformin treatment of letrozole - induced polycystic ovarian syndrome: targeting PI3K/Akt signalling pathway, redox status and mitochondrial dysfunction in ovarian tissue. Redox Rep. 2023;28:2160569.

Article  PubMed  PubMed Central  Google Scholar 

Li T, Mo H, Chen W, Li L, Xiao Y, Zhang J, Li X, Lu Y. Role of the PI3K-Akt signaling pathway in the pathogenesis of polycystic ovary syndrome. Reprod Sci. 2017;24:646–55.

Article  CAS  PubMed  Google Scholar 

Abramovich D, Irusta G, Parborell F, Tesone M. Intrabursal injection of vascular endothelial growth factor trap in eCG-treated prepubertal rats inhibits proliferation and increases apoptosis of follicular cells involving the PI3K/AKT signaling pathway. Fertil Steril. 2010;93:1369–77.

Article  CAS  PubMed  Google Scholar 

Restuccia DF, Hynx D, Hemmings BA. Loss of PKBbeta/Akt2 predisposes mice to ovarian cyst formation and increases the severity of polycystic ovary formation in vivo. Dis Model Mech. 2012;5:403–11.

CAS  PubMed  PubMed Central  Google Scholar 

Dompe C, Kulus M, Stefanska K, Kranc W, Chermula B, Bryl R, Pienkowski W, Nawrocki MJ, Petitte JN, Stelmach B et al. Human granulosa cells-Stemness Properties, Molecular Cross-talk and Follicular Angiogenesis. Cells 2021, 10.

Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, et al. Recent advances in mammalian reproductive biology. Sci China Life Sci. 2020;63:18–58.

Article  PubMed  Google Scholar 

Gaytan F, Morales C, Roa J, Tena-Sempere M. Changes in keratin 8/18 expression in human granulosa cell lineage are associated to cell death/survival events: potential implications for the maintenance of the ovarian reserve. Hum Reprod. 2018;33:680–9.

Article  CAS  PubMed  Google Scholar 

Strauss JF 3rd, Wood JR, Christenson LK, McAllister JM. Strategies to elucidate the mechanism of excessive theca cell androgen production in PCOS. Mol Cell Endocrinol. 2002;186:183–8.

Article  CAS  PubMed  Google Scholar 

Waterbury JS, Teves ME, Gaynor A, Han AX, Mavodza G, Newell J, Strauss JF 3rd, McAllister JM. The PCOS GWAS candidate gene ZNF217 influences Theca Cell expression of DENND1A.V2, CYP17A1, and Androgen Production. J Endocr Soc. 2022;6:bvac078.

Article  PubMed  PubMed Central  Google Scholar 

Chugh RM, Park HS, El Andaloussi A, Elsharoud A, Esfandyari S, Ulin M, Bakir L, Aboalsoud A, Ali M, Ashour D, et al. Mesenchymal stem cell therapy ameliorates metabolic dysfunction and restores fertility in a PCOS mouse model through interleukin-10. Stem Cell Res Ther. 2021;12:388.

Article  CAS 

留言 (0)

沒有登入
gif