Detection of a historic reservoir of bedaquiline/clofazimine resistance-associated variants in Mycobacterium tuberculosis

World Health Organization. Global tuberculosis report 2022. (WHO, 2022).

Cegielski JP, et al. Multidrug-resistant Tuberculosis treatment outcomes in relation to treatment and initial versus acquired second-line drug resistance. Clin Infect Dis. 2016;62:418–30. https://doi.org/10.1093/cid/civ910.

Article  PubMed  Google Scholar 

World Health Organization. Global tuberculosis report 2019. (2019).

Andries K, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307:223–7. https://doi.org/10.1126/science.1106753.

Article  ADS  CAS  PubMed  Google Scholar 

Diacon AH, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med. 2014;371:723–32. https://doi.org/10.1056/NEJMoa1313865.

Article  CAS  PubMed  Google Scholar 

Food and Drug Administration. SIRTURO approval letter. Retrieved Jan 15, 2024, from https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2012/204384orig1s000ltr.pdf.

Borisov SE. et al. Effectiveness and safety of bedaquiline-containing regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur Respir J 2017;49. https://doi.org/10.1183/13993003.00387-2017

Guglielmetti L. et al. Long-term outcome and safety of prolonged bedaquiline treatment for multidrug-resistant tuberculosis. Eur Respir J 2017;49. https://doi.org/10.1183/13993003.01799-2016

Olayanju O. et al. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa. Eur Respir J 2018;51. https://doi.org/10.1183/13993003.00544-2018

Ndjeka N. et al. High treatment success rate for multidrug-resistant and extensively drug-resistant tuberculosis using a bedaquiline-containing treatment regimen. Eur Respir J 2018;52. https://doi.org/10.1183/13993003.01528-2018

World Health Organization. Module 4: treatment - drug-resistant tuberculosis treatment, 2022 update. (2022).

Conradie F, et al. Bedaquiline-Pretomanid-Linezolid regimens for drug-resistant Tuberculosis. N Engl J Med. 2022;387:810–23. https://doi.org/10.1056/NEJMoa2119430.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berry C, et al. TB-PRACTECAL: study protocol for a randomised, controlled, open-label, phase II-III trial to evaluate the safety and efficacy of regimens containing bedaquiline and pretomanid for the treatment of adult patients with pulmonary multidrug-resistant tuberculosis. Trials. 2022;23:484. https://doi.org/10.1186/s13063-022-06331-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paton NI, Cousins C, Suresh C. Treatment strategy for rifampin-susceptible tuberculosis. Reply N Engl J Med. 2023;388:2298. https://doi.org/10.1056/NEJMc2304776.

Article  PubMed  Google Scholar 

Manson AL, et al. Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat Genet. 2017;49:395–402. https://doi.org/10.1038/ng.3767.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen KA, et al. Evolution of extensively drug-resistant Tuberculosis over four decades: Whole genome sequencing and dating analysis of Mycobacterium tuberculosis isolates from KwaZulu-Natal. PLoS Med. 2015;12:e1001880. https://doi.org/10.1371/journal.pmed.1001880.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eldholm V, Balloux F. Antimicrobial resistance in Mycobacterium tuberculosis: the odd one out. Trends Microbiol. 2016;24:637–48. https://doi.org/10.1016/j.tim.2016.03.007.

Article  CAS  PubMed  Google Scholar 

Huitric E, et al. Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother. 2010;54:1022–8. https://doi.org/10.1128/AAC.01611-09.

Article  CAS  PubMed  Google Scholar 

Almeida D, et al. Mutations in pepQ confer low-level resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2016;60:4590–9. https://doi.org/10.1128/AAC.00753-16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andries K, et al. Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS ONE. 2014;9:e102135. https://doi.org/10.1371/journal.pone.0102135.

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Hartkoorn RC, Uplekar S, Cole ST. Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014;58:2979–81. https://doi.org/10.1128/AAC.00037-14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Poulton NC, Azadian ZA, DeJesus MA, Rock JM. Mutations in rv0678 confer low-level resistance to Benzothiazinone DprE1 inhibitors in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2022;66:e0090422. https://doi.org/10.1128/aac.00904-22.

Article  CAS  PubMed  Google Scholar 

Vargas R Jr, et al. Role of epistasis in Amikacin, Kanamycin, Bedaquiline, and Clofazimine resistance in Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother. 2021;65:e0116421. https://doi.org/10.1128/AAC.01164-21.

Article  PubMed  Google Scholar 

Bloemberg GV, et al. Acquired resistance to Bedaquiline and Delamanid in therapy for Tuberculosis. N Engl J Med. 2015;373:1986–8. https://doi.org/10.1056/NEJMc1505196.

Article  PubMed  PubMed Central  Google Scholar 

Xu J. et al. Primary Clofazimine and Bedaquiline resistance among isolates from patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother 2017;61. https://doi.org/10.1128/AAC.00239-17

Zimenkov DV, et al. Examination of bedaquiline- and linezolid-resistant Mycobacterium tuberculosis isolates from the Moscow region. J Antimicrob Chemother. 2017;72:1901–6. https://doi.org/10.1093/jac/dkx094.

Article  CAS  PubMed  Google Scholar 

de Vos M, et al. Bedaquiline microheteroresistance after cessation of Tuberculosis treatment. N Engl J Med. 2019;380:2178–80. https://doi.org/10.1056/NEJMc1815121.

Article  PubMed  PubMed Central  Google Scholar 

Ghodousi A. et al. Acquisition of cross-resistance to Bedaquiline and Clofazimine following treatment for Tuberculosis in Pakistan. Antimicrob Agents Chemother 2019;63. https://doi.org/10.1128/AAC.00915-19

Polsfuss S, et al. Emergence of low-level delamanid and Bedaquiline resistance during extremely drug-resistant tuberculosis treatment. Clin Infect Dis. 2019;69:1229–31. https://doi.org/10.1093/cid/ciz074.

Article  CAS  PubMed  Google Scholar 

Mokrousov I, Akhmedova G, Polev D, Molchanov V, Vyazovaya A. Acquisition of bedaquiline resistance by extensively drug-resistant Mycobacterium tuberculosis strain of Central Asian outbreak clade. Clin Microbiol Infect. 2019;25:1295–7. https://doi.org/10.1016/j.cmi.2019.06.014.

Article  CAS  PubMed  Google Scholar 

Kadura S, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother. 2020;75:2031–43. https://doi.org/10.1093/jac/dkaa136.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Roberts LW. et al. Repeated evolution of bedaquiline resistance in Mycobacterium tuberculosis is driven by truncation of mmpR5. bioRxiv, 2022.2012.2008.519610. 2022. https://doi.org/10.1101/2022.12.08.519610

Sonnenkalb L, et al. Bedaquiline and clofazimine resistance in Mycobacterium tuberculosis: an in-vitro and in-silico data analysis. Lancet Microbe. 2023;4:e358–68. https://doi.org/10.1016/S2666-5247(23)00002-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ismail N, et al. Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. Lancet Microbe. 2021;2:E604–16. https://doi.org/10.1016/S2666-5247(21)00175-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. 2023. https://iris.who.int/handle/10665/374061. Accessed 31 Jan 2024.

World Health Organization. Technical report on critical concentrations for TB drug susceptibility testing of medicines used in the treatment of drug-resistant TB. 2018.

Nimmo C. et al. Bedaquiline resistance in drug-resistant tuberculosis HIV co-infected patients. Eur Respir J 2020;55. https://doi.org/10.1183/13993003.02383-2019

Martinez E, et al. Mutations associated with in vitro resistance to Bedaquiline in Mycobacterium tuberculosis isolates in Australia. Tuberculosis (Edinb). 2018;111:31–4. https://doi.org/10.1016/j.tube.2018.04.007.

Article  CAS  PubMed  Google Scholar 

Timm J, et al. Baseline and acquired resistance to bedaquiline, linezolid and pretomanid, and impact on treatment outcomes in four tuberculosis clinical trials containing pretomanid. PLOS Glob Public Health. 2023;3:e0002283. https://doi.org/10.1371/journal.pgph.0002283.

Article  PubMed  PubMed Central  Google Scholar 

Villellas C, et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. J Antimicrob Chemother. 2017;72:684–90. https://doi.org/10.1093/jac/dkw502.

Article  CAS  PubMed  Google Scholar 

Merker M, et al. Phylogenetically informative mutations in genes implicated in antibiotic resistance in Mycobacterium tuberculosis complex. Genome Med. 2020;12:27. https://doi.org/10.1186/s13073-020-00726-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coll F, et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun. 2014;5:4812. https://doi.org/10.1038/ncomms5812.

Article  ADS  CAS  PubMed  Google Scholar 

Sobkowiak B, et al. Identifying mixed Mycobacterium tuberculosis infections from whole genome sequence data. BMC Genomics. 2018;19:613. https://doi.org/10.1186/s12864-018-4988-z.

Article 

留言 (0)

沒有登入
gif