Biogeochemical cycle and isotope fractionation of copper in plant–soil systems: a review

Albarede F (2004) The stable isotope geochemistry of copper and zinc. In: Johnson CM, Beard BL and Albarede F (eds) Geochemistry of non-traditional stable isotopes. Reviews in Mineralogy & Geochemistry, pp. 409–427. https://doi.org/10.2138/gsrmg.55.1.409

Alloway, B.J., 2013. Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed), Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer Netherlands, Dordrecht, pp. 11–50. https://doi.org/10.1007/978-94-007-4470-7_2

Alsaleh KAM, Meuser H, Usman ARA, Al-Wabel MI, Al-Farraj AS (2018) A comparison of two digestion methods for assessing heavy metals level in urban soils influenced by mining and industrial activities. J Environ Manage 206:731–739. https://doi.org/10.1016/j.jenvman.2017.11.026

Article  CAS  PubMed  Google Scholar 

Al-Sid-Cheikh M, Pedrot M, Dia A, Guenet H, Vantelon D, Davranche M, Gruau G, Delhaye T (2015) Interactions between natural organic matter, sulfur, arsenic and iron oxides in re-oxidation compounds within riparian wetlands: NanoSIMS and X-ray adsorption spectroscopy evidences. ScTEn 515:118–128. https://doi.org/10.1016/j.scitotenv.2015.02.047

Article  ADS  CAS  Google Scholar 

Babcsanyi I, Imfeld G, Granet M, Chabaux F (2014) Copper stable isotopes to trace copper behavior in wetland systems. Environ Sci Technol 48(10):5520–5529. https://doi.org/10.1021/es405688v

Article  ADS  CAS  PubMed  Google Scholar 

Babcsanyi I, Chabaux F, Granet M, Meite F, Payraudeau S, Duplay J, Imfeld G (2016) Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes. ScTEn 557–558:154–162. https://doi.org/10.1016/j.scitotenv.2016.03.037

Article  ADS  CAS  Google Scholar 

Balistrieri LS, Borrok DM, Wanty RB, Ridley WI (2008) Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: experimental mixing of acid rock drainage and ambient river water. Geochim Cosmochim Acta 72(2):311–328. https://doi.org/10.1016/j.gca.2007.11.013

Article  ADS  CAS  Google Scholar 

Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, Merchant SS, Kraemer U (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24(2):738–761. https://doi.org/10.1105/tpc.111.090431

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertini I, Cavallaro G, Mcgreevy KS (2010) Cellular copper management—a draft user’s guide. Coord Chem Rev 254(5–6):506–524. https://doi.org/10.1016/j.ccr.2009.07.024

Article  CAS  Google Scholar 

Bigalke M, Weyer S, Kobza J, Wilcke W (2010a) Stable Cu and Zn isotope ratios as tracers of sources and transport of Cu and Zn in contaminated soil. Geochim Cosmochim Acta 74(23):6801–6813. https://doi.org/10.1016/j.gca.2010.08.044

Article  ADS  CAS  Google Scholar 

Bigalke M, Weyer S, Wilcke W (2010b) Copper isotope fractionation during complexation with insolubilized humic acid. Environ Sci Technol 44(14):5496–5502. https://doi.org/10.1021/es1017653

Article  ADS  CAS  PubMed  Google Scholar 

Bigalke M, Weyer S, Wilcke W (2011) Stable Cu isotope fractionation in soils during oxic weathering and podzolization. Geochim Cosmochim Acta 75(11):3119–3134. https://doi.org/10.1016/j.gca.2011.03.005

Article  ADS  CAS  Google Scholar 

Bigalke M, Kersten M, Weyer S, Wilcke W (2013) Isotopes trace biogeochemistry and sources of Cu and Zn in an intertidal soil. SSSAJ 77(2):680–691. https://doi.org/10.2136/sssaj2012.0225

Article  CAS  Google Scholar 

Blotevogel S, Oliva P, Sobanska S, Viers J, Vezin H, Audry S, Prunier J, Darrozes J, Orgogozo L, Courjault-Rade P, Schreck E (2018) The fate of Cu pesticides in vineyard soils: a case study using δ65Cu isotope ratios and EPR analysis. ChGeo 477:35–46. https://doi.org/10.1016/j.chemgeo.2017.11.032

Article  ADS  CAS  Google Scholar 

Blotevogel S, Schreck E, Audry S, Saldi GD, Viers J, Courjault-Rade P, Darrozes J, Orgogozo L, Oliva P (2019) Contribution of soil elemental contents and Cu and Sr isotope ratios to the understanding of pedogenetic processes and mechanisms involved in the soil-to-grape transfer (Soave vineyard, Italy). Geoderma 343:72–85. https://doi.org/10.1016/j.geoderma.2019.02.015

Article  ADS  CAS  Google Scholar 

Blotevogel S, Oliva P, Denaix L, Audry S, Viers J, Schreck E (2022) Stable Cu isotope ratios show changes in Cu uptake and transport mechanisms in Vitis vinifera due to high Cu exposure. Front Plant Sci 12:755944. https://doi.org/10.3389/fpls.2021.755944

Article  PubMed  PubMed Central  Google Scholar 

Borch T, Kretzschmar R, Kappler A, Van Cappellen P, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44(1):15–23. https://doi.org/10.1021/es9026248

Article  ADS  CAS  PubMed  Google Scholar 

Burkhead J, Reynolds K, Abdel-Ghany S, Cohu C (2009) Copper homeostasis. New Phytol 182(4):799–816. https://doi.org/10.1111/j.1469-8137.2009.02846.x

Article  CAS  PubMed  Google Scholar 

Caldelas C, Weiss DJ (2017) Zinc Homeostasis and isotopic fractionation in plants: a review. Plant Soil 411(1–2):17–46. https://doi.org/10.1007/s11104-016-3146-0

Article  CAS  Google Scholar 

Chadwick OA, Brimhall GH, Hendricks DM (1990) From a black to a gray box—A mass balance interpretation of pedogenesis. Geomo 3(3):369–390. https://doi.org/10.1016/0169-555X(90)90012-F

Article  ADS  Google Scholar 

Chai YN, Schachtman DP (2021) Root exudates impact plant performance under abiotic stress. Trends Plant Sci 27(1):80–91. https://doi.org/10.1016/j.tplants.2021.08.003

Article  CAS  PubMed  Google Scholar 

Contin M, Mondini C, Leita L, De Nobili M (2007) Enhanced soil toxic metal fixation in iron (hydr)oxides by redox cycles. Geoderma 140(1–2):164–175. https://doi.org/10.1016/j.geoderma.2007.03.017

Article  ADS  CAS  Google Scholar 

Cornu J-Y, Huguenot D, Jézéquel K, Lollier M, Lebeau T (2017) Bioremediation of copper-contaminated soils by bacteria. World J Microbiol Biotechnol 33(2):26. https://doi.org/10.1007/s11274-016-2191-4

Article  CAS  PubMed  Google Scholar 

Coutaud M, Méheut M, Glatzel P, Pokrovski GS, Viers J, Rols J-L, Pokrovsky OS (2018) Small changes in Cu redox state and speciation generate large isotope fractionation during adsorption and incorporation of Cu by a phototrophic biofilm. Geochim Cosmochim Acta 220:1–18. https://doi.org/10.1016/j.gca.2017.09.018

Article  ADS  CAS  Google Scholar 

Curie C, Cassin G, Couch D, Divol F, Higuchi K, Le Jean M, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103(1):1–11. https://doi.org/10.1093/aob/mcn207

Article  CAS  PubMed  Google Scholar 

Dotor-Almazan A, Aurora Armienta-Hernandez M, Talavera-Mendoza O, Ruiz J (2017) Geochemical behavior of Cu and sulfur isotopes in the tropical mining region of Taxco, Guerrero (southern Mexico). ChGeo 471:1–12. https://doi.org/10.1016/j.chemgeo.2017.09.005

Article  ADS  CAS  Google Scholar 

Ehrlich S, Butler I, Halicz L, Rickard D, Oldroyd A, Matthews A (2004) Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite. CuS Chgeo 209(3–4):259–269. https://doi.org/10.1016/j.chemgeo.2004.06.010

Article  ADS  CAS  Google Scholar 

Eiler JM, Bergquist B, Bourg I, Cartigny P, Farquhar J, Gagnon A, Guo W, Halevy I, Hofmann A, Larson TE, Levin N, Schauble EA, Stolper D (2014) Frontiers of stable isotope geoscience. Chgeo 372:119–143. https://doi.org/10.1016/j.chemgeo.2014.02.006

Article  ADS  CAS  Google Scholar 

Fekiacova Z, Cornu S, Pichat S (2015) Tracing contamination sources in soils with Cu and Zn isotopic ratios. ScTEn 517:96–105. https://doi.org/10.1016/j.scitotenv.2015.02.046

Article  ADS  CAS  Google Scholar 

Fernandez A, Borrok DM (2009) Fractionation of Cu, Fe, and Zn isotopes during the oxidative weathering of sulfide-rich rocks. ChGeo 264(1–4):1–12. https://doi.org/10.1016/j.chemgeo.2009.01.024

Article  ADS  CAS  Google Scholar 

Fulda B, Voegelin A, Ehlert K, Kretzschmar R (2013) Redox transformation, solid phase speciation and solution dynamics of copper during soil reduction and reoxidation as affected by sulfate availability. Geochim Cosmochim Acta 123:385–402. https://doi.org/10.1016/j.gca.2013.07.017

Article  ADS  CAS  Google Scholar 

Gaetke LM, Chow-Johnson HS, Chow CK (2014) Copper: toxicological relevance and mechanisms. Arch Toxicol 88(11):1929–1938. https://doi.org/10.1007/s00204-014-1355-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gorman-Lewis D, Martens-Habbena W, Stahl DA (2019) Cu(II) adsorption onto ammonia-oxidizing bacteria and archaea. Geochim Cosmochim Acta 255:127–143. https://doi.org/10.1016/j.gca.2019.04.011

Article  ADS  CAS  Google Scholar 

Han G, Tang Y, Liu M, Van Zwieten L, Yang X, Yu C, Wang H, Song Z (2020) Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change. Southwest China Agric Ecosyst Environ 301:107027. https://doi.org/10.1016/j.agee.2020.107027

留言 (0)

沒有登入
gif