Etiopathogenesis of medication-related osteonecrosis of the jaws: a review

Ruggiero SL, Dodson TB, Aghaloo T, Carlson ER, Ward BB, Kademani D (2022) American Association of Oral and maxillofacial surgeons’ position paper on medication-related osteonecrosis of the Jaws—2022 Update. JOMS 80(5):920–943. https://doi.org/10.1016/j.joms.2022.02.008

Article  Google Scholar 

Soares AL, Simon S, Gebrim LH, Nazário ACP, Lazaretti-Castro M (2020) Prevalence and risk factors of medication-related osteonecrosis of the jaw in osteoporotic and breast cancer patients: a cross-sectional study. Support Care Cancer 28(5):2265–2271. https://doi.org/10.1007/s00520-019-05044-0

Article  PubMed  Google Scholar 

Kim R, Kim SW, Kim H, Ku SY (2022) The impact of sex steroids on osteonecrosis of the jaw. Osteoporos Sarcopenia 8(2):58–67. https://doi.org/10.1016/j.afos.2022.05.003

Article  PubMed  PubMed Central  Google Scholar 

Ervolino E et al (2019) Antimicrobial photodynamic therapy improves the alveolar repair process and prevents the occurrence of osteonecrosis of the jaws after tooth extraction in senile rats treated with zoledronate. Bone 120(June 2018):101–113. https://doi.org/10.1016/j.bone.2018.10.014

Article  CAS  PubMed  Google Scholar 

Sims NA, Martin TJ (2020) Osteoclasts provide coupling signals to osteoblast lineage cells through multiple mechanisms. Annu Rev Physiol 82:507–529. https://doi.org/10.1146/annurev-physiol-021119-034425

Article  CAS  PubMed  Google Scholar 

Ruggiero SL, Fantasia J, Carlson E (2006) Bisphosphonate-related osteonecrosis of the jaw: background and guidelines for diagnosis, staging and management. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(4):433–441. https://doi.org/10.1016/j.tripleo.2006.06.004

Article  PubMed  Google Scholar 

Russell RGG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19(6):733–759. https://doi.org/10.1007/s00198-007-0540-8

Article  CAS  PubMed  Google Scholar 

Acil Y, Weitkamp JT, Wieker H, Flörke C, Wiltfang J, Gülses A (2022) Organic Bone Matrix component type I and V Collagen are not destructed in Bisphosphonate-Associated Osteonecrosis of the Jaws. Med (Kaunas) 58(11):1690. https://doi.org/10.3390/medicina58111690

Article  Google Scholar 

Heymann D, Ory B, Gouin F, Green JR, Rédini F (2004) Bisphosphonates: new therapeutic agents for the treatment of bone tumors. Trends Mol Med 10(7):337–343. https://doi.org/10.1016/j.molmed.2004.05.007

Article  CAS  PubMed  Google Scholar 

Widler L et al (2002) Highly potent geminal bisphosphonates. From pamidronate disodium (Aredia) to zoledronic acid (Zometa). J Med Chem, 45(17), 3721–3738. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12166945

Lin JH (1996) Bisphosphonates: a review of their pharmacokinetic properties. Bone 18(2):75–85. https://doi.org/10.1016/8756-3282(95)00445-9

Article  CAS  PubMed  Google Scholar 

Rogers MJ, Mönkkönen J, Munoz MA (2020) Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. Bone 139:115493. https://doi.org/10.1016/j.bone.2020.115493

Article  CAS  PubMed  Google Scholar 

Lasseter KC et al (2005) Pharmacokinetic considerations in determining the terminal elimination half-lives of bisphosphonates. Clin Drug Investig 25(2):107–114. https://doi.org/10.2165/00044011-200525020-00003

Article  CAS  PubMed  Google Scholar 

Pittman K, Antill YC, Goldrick A, Goh J, de Boer RH (2017) Denosumab: Prevention and management of hypocalcemia, osteonecrosis of the jaw and atypical fractures. Asia-Pac J Clin Oncol 13(4):266–276. https://doi.org/10.1111/ajco.12517

Article  PubMed  Google Scholar 

De Leon-Oliva D, Barrena-Blázquez S, Jiménez-Álvarez L et al (2023) The RANK-RANKL-OPG System: A Multifaceted Regulator of Homeostasis, immunity, and Cancer. Med (Kaunas) 59(10):1752. https://doi.org/10.3390/medicina59101752

Article  Google Scholar 

Nagy V, Penninger JM (2015) The RANKL-RANK story. Gerontology 61(6):534–542. https://doi.org/10.1159/000371845

Article  CAS  PubMed  Google Scholar 

He L, Sun X, Liu Z, Qiu Y, Niu Y (2020) Pathogenesis and multidisciplinary management of medication-related osteonecrosis of the jaw. Int J Oral Sci 12(1):1–11. https://doi.org/10.1038/s41368-020-00093-2

Article  Google Scholar 

Kendler DL, Cosman F, Stad RK, Ferrari S (2022) Denosumab in the treatment of osteoporosis: 10 years later: a narrative review. Adv Ther 39(1):58–74. https://doi.org/10.1007/s12325-021-01936-y

Article  PubMed  Google Scholar 

Avishai G, Muchnik D, Masri D, Zlotogorski-Hurvitz A, Chaushu L (2022) Minimizing MRONJ after tooth extraction in Cancer patients receiving bone-modifying agents. J Clin Med 11(7). https://doi.org/10.3390/jcm11071807

Lee D et al (2016) Inhibition of Osteoclast differentiation and bone resorption by bisphosphonate-conjugated gold nanoparticles. Sci Rep 6:1–11. https://doi.org/10.1038/srep27336

Article  CAS  Google Scholar 

Aghaloo T, Hazboun R, Tetradis S (2015) Pathophysiology of osteonecrosis of the Jaws. Oral Maxillofac Surg Clin North Am 27(4):489–496. https://doi.org/10.1016/j.coms.2015.06.001

Article  PubMed  PubMed Central  Google Scholar 

Tempesta A, Capodiferro S, Di Nanna S et al (2023) Medication-related osteonecrosis of the jaw triggered by endodontic failure in oncologic patients. Oral Dis 29(7):2799–2805. https://doi.org/10.1111/odi.14449

Article  PubMed  Google Scholar 

Abtahi J, Agholme F, Sandberg O, Aspenberg P (2012) Bisphosphonate-induced osteonecrosis of the jaw in a rat model arises first after the bone has become exposed. No primary necrosis in unexposed bone. J Oral Pathol Med 41(6):494–499. https://doi.org/10.1111/j.1600-0714.2011.01125.x

Article  CAS  PubMed  Google Scholar 

Singh M, Gonegandla GS (2019) Bisphosphonate-Induced Osteonecrosis of the Jaws (BIONJ). J Maxillofac Oral Surg 19(2):162–167. https://doi.org/10.1007/s12663-019-01211-2

Article  PubMed  PubMed Central  Google Scholar 

Mu H, Pang Y, Liu L, Liu J, Liu C (2023) Clinical values of serum Semaphorin 4D (Sema4D) in medication–related osteonecrosis of the jaw. Eur J Med Res, Mar 30;28(1):140. https://doi.org/10.1186/s40001-023-01095-6

Funayama N, Yagyuu T, Imada M, Ueyama Y, Nakagawa Y, Kirita T (2023) Impact of beta-tricalcium phosphate on preventing tooth extraction-triggered bisphosphonate-related osteonecrosis of the jaw in rats. Sci Rep 13(1):16032. https://doi.org/10.1038/s41598-023-43315-3

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Okawa H, Kondo T, Hokugo A et al (2022) Mechanism of bisphosphonate-related osteonecrosis of the jaw (BRONJ) revealed by targeted removal of legacy bisphosphonate from jawbone using competing inert hydroxymethylene diphosphonate. Elife Aug 2611:e76207. https://doi.org/10.7554/eLife.76207

Article  Google Scholar 

Soma T, Iwasaki R, Sato Y et al (2022) Osteonecrosis development by tooth extraction in zoledronate treated mice is inhibited by active vitamin D analogues, anti-inflammatory agents or antibiotics. Sci Rep 12(1):19. https://doi.org/10.1038/s41598-021-03966-6

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435. https://doi.org/10.1038/nature07201

Article  ADS  CAS  PubMed  Google Scholar 

Hasegawa T et al (2019) Medication-related osteonecrosis of the jaw after tooth extraction in cancer patients: a multicenter retrospective study. Osteoporos Int 30(1):231–239. https://doi.org/10.1007/s00198-018-4746-8

Article  CAS  PubMed  Google Scholar 

Moreno-Rabié C et al (2022) Radiographic predictors for MRONJ in oncologic patients undergoing tooth extraction. Sci Rep 12:11280. https://doi.org/10.1038/s41598-022-15254-y

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Soutome S, Hayashida S, Funahara M et al (2018) Factors affecting development of medication-related osteonecrosis of the jaw in cancer patients receiving high-dose bisphosphonate or denosumab therapy: Is tooth extraction a risk factor? PLoS One. 2018;13(7):e0201343. https://doi.org/10.1371/journal.pone.0201343

Tsurushima H, Kokuryo S, Sakaguchi O, Tanaka J, Tominaga K (2013) Bacterial promotion of bisphosphonate-induced osteonecrosis in Wistar rats. Int J Oral Maxillofac Surg 42(11):1481–1487. https://doi.org/10.1016/j.ijom.2013.06.011

Article  CAS  PubMed  Google Scholar 

Wu S, Li F, Tan J, Ye X, Le Y, Liu N, Everts V, Wan Q (2022) Porphyromonas gingivalis induces bisphosphonate-related osteonecrosis of the Femur in mice. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2022.886411

Article  PubMed  PubMed Central  Google Scholar 

Otto S et al (2010) Bisphosphonate-related osteonecrosis of the Jaw: is pH the Missing Part in the Pathogenesis Puzzle? J Oral Maxillofac Surg 68(5):1158–1161. https://doi.org/10.1016/j.joms.2009.07.079

Article  PubMed  Google Scholar 

Lima WJM, Pontes JCX, Figueiredo LS, Araújo RDS, Paiva Sousa MC, Aquino JS, Castro RD, Alves AF (2023) Obesity influences the development of bisphosphonate-induced osteonecrosis in Wistar rats. J Appl Oral Sci. https://doi.org/10.1590/1678-7757-2023-0133

Article  PubMed  PubMed Central  Google Scholar 

Schwech N, Nilsson J, Gabre P (2023) Incidence and risk factors for medication-related osteonecrosis after tooth extraction in cancer patients—A systematic review. Clin Exp Dent Res 9(1):55–65. https://doi.org/10.1002/cre2.698

Article  PubMed 

留言 (0)

沒有登入
gif