Do Not Lose Your Nerve, Be Callus: Insights Into Neural Regulation of Fracture Healing

Kacena MA, Plotkin LI, Fehrenbacher JC. The use of artificial intelligence in writing scientific review articles. Curr Osteoporos Rep. 2024. https://doi.org/10.1007/s11914-023-00852-0.

Article  PubMed  Google Scholar 

Nazzal MK, Morris AJ, Parker RS, et al. Using AI to write a review article examining the role of the nervous system on skeletal homeostasis and fracture healing. Curr Osteoporos Rep. 2024. https://doi.org/10.1007/s11914-023-00854-y.

Article  PubMed  Google Scholar 

Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45–54.

Article  PubMed  Google Scholar 

Ekegren CL, et al. Incidence, costs and predictors of non-union, delayed union and mal-union following long bone fracture. Int J Environ Res Public Health. 2018;15(12):2845.

Article  PubMed  PubMed Central  Google Scholar 

Davis KM, et al. Muscle-bone interactions during fracture healing. J Musculoskelet Neuronal Interact. 2015;15(1):1–9.

PubMed  PubMed Central  Google Scholar 

Rivera KO, et al. Local injections of beta-NGF accelerates endochondral fracture repair by promoting cartilage to bone conversion. Sci Rep. 2020;10(1):22241.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karnik, S.J., et al. Megakaryocyte secreted factors regulate bone marrow niche cells during skeletal homeostasis, aging, and disease. Calcif Tissue Int. 2023.

Brazill JM, et al. Nerves in bone: evolving concepts in pain and anabolism. J Bone Miner Res. 2019;34(8):1393–406.

Article  PubMed  Google Scholar 

Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. 2012;15(8):1063–7. https://doi.org/10.1038/nn.3144.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, et al. Bone reinnervation after fracture: a study in the rat. J Bone Miner Res. 2001;16(8):1505–10.

Article  CAS  PubMed  Google Scholar 

Li Z, et al. Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest. 2019;129(12):5137–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nordsletten L, et al. The neuronal regulation of fracture healing. Effects of sciatic nerve resection in rat tibia. Acta Orthop Scand. 1994;65(3):299–304.

Article  CAS  PubMed  Google Scholar 

Madsen JE, et al. Fracture healing and callus innervation after peripheral nerve resection in rats. Clin Orthop Relat Res. 1998;351:230–40.

Article  Google Scholar 

Madsen JE, et al. Neural involvement in post-traumatic osteopenia: an experimental study in the rat. Bone. 1996;18(5):411–6.

Article  CAS  PubMed  Google Scholar 

Hukkanen M, et al. Effect of sciatic nerve section on neural ingrowth into the rat tibial fracture callus. Clin Orthop Relat Res. 1995;311:247–57.

Google Scholar 

Aro H. Effect of nerve injury on fracture healing. Callus formation studied in the rat. Acta Orthop Scand. 1985;56(3):233–7.

Article  CAS  PubMed  Google Scholar 

Aro H, Eerola E, Aho AJ. Development of nonunions in the rat fibula after removal of periosteal neural mechanoreceptors. Clin Orthop Relat Res. 1985;199:292–9.

Article  Google Scholar 

Jiang SD, Jiang LS, Dai LY. Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats. Osteoporos Int. 2006;17(10):1552–61.

Article  PubMed  Google Scholar 

Lam WL, et al. The role of the sensory nerve response in ultrasound accelerated fracture repair. J Bone Joint Surg Br. 2012;94(10):1433–8.

Article  PubMed  Google Scholar 

Tomlinson RE, et al. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci U S A. 2017;114(18):E3632–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kirkeby OJ, et al. Fracture weakens ipsilateral long bones: mechanical and metabolic changes after femoral or tibial injury in rats. J Orthop Trauma. 1993;7(4):343–7.

Article  CAS  PubMed  Google Scholar 

Lau YC, et al. Dorsal root ganglion electrical stimulation promoted intertransverse process spinal fusion without decortications and bone grafting: a proof-of-concept study. Spine J. 2014;14(10):2472–8.

Article  PubMed  Google Scholar 

•• Mi J, et al. Implantable electrical stimulation at dorsal root ganglions accelerates osteoporotic fracture healing via calcitonin gene-related peptide. Adv Sci (Weinh). 2022;9(1): e2103005. Discusses role of dorsal root ganglia and sensory nerve fibers on bone mineral density in fracture setting. Identifies CGRP as an important neuropeptide for this DRG mechanism.

Article  PubMed  Google Scholar 

Apel PJ, et al. Effect of selective sensory denervation on fracture-healing: an experimental study of rats. J Bone Joint Surg Am. 2009;91(12):2886–95.

Article  PubMed  Google Scholar 

Nair A, et al. Characterization of collagen response to bone fracture healing using polarization-SHG. Sci Rep. 2022;12(1):18453.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Onuoha GN. Circulating sensory peptide levels within 24 h of human bone fracture. Peptides. 2001;22(7):1107–10.

Article  CAS  PubMed  Google Scholar 

Elefteriou F. Impact of the autonomic nervous system on the skeleton. Physiol Rev. 2018;98(3):1083–112.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi L, et al. Vasoactive intestinal peptide promotes fracture healing in sympathectomized mice. Calcif Tissue Int. 2021;109(1):55–65.

Article  CAS  PubMed  Google Scholar 

Wagner, J.M., et al. Role of autonomous neuropathy in diabetic bone regeneration. Cells. 2022;11(4).

Niedermair, T., et al. Impact of the sensory and sympathetic nervous system on fracture healing in ovariectomized mice. Int J Mol Sci. 2020;21(2).

Niedermair T, et al. Absence of substance P and the sympathetic nervous system impact on bone structure and chondrocyte differentiation in an adult model of endochondral ossification. Matrix Biol. 2014;38:22–35.

Article  CAS  PubMed  Google Scholar 

Ito H, Asami G. Lumbosacral sympathetic ganglionectomy its value as a therapeutic measure for thromboangiitis obliterans (with a sidelight upon alleged sympathetic innervation of the tonus of the skeletal muscles). Am J Surg. 1932;15(1):26–38.

Article  Google Scholar 

Harris R, McDonald J. The effect of lumbar sympathectomy upon the growth of legs paralyzed by anterior poliomyelitis. JBJS. 1936;18(1):35–45.

Google Scholar 

Wang T, et al. Effects of sympathetic innervation loss on mandibular distraction osteogenesis. J Craniofac Surg. 2012;23(5):1524–8.

Article  PubMed  Google Scholar 

Du Z, et al. Sympathetic denervation-induced MSC mobilization in distraction osteogenesis associates with inhibition of MSC migration and osteogenesis by norepinephrine/adrb3. PLoS ONE. 2014;9(8): e105976.

Article  PubMed  PubMed Central  Google Scholar 

Gadomski S, et al. A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise. Cell Stem Cell. 2022;29(4):528-544 e9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun S, et al. No pain, no gain? The effects of pain-promoting neuropeptides and neurotrophins on fracture healing. Bone. 2020;131: 115109.

Article  PubMed  Google Scholar 

Wang Q, et al. Research progress in calcitonin gene-related peptide and bone repair. Biomolecules. 2023;13(5):838.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Su N. Neurokinin-1-tachykinin receptor agonist promotes diabetic fracture healing in rats with type 1 diabetes via modulation of Wnt/beta-catenin signalling axis. Saudi J Biol Sci. 2021;28(4):2139–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hofman M, et al. Effect of neurokinin-1-receptor blockage on fracture healing in rats. Sci Rep. 2019;9(1):9744.

Article  PubMed  PubMed Central  Google Scholar 

Castro-Vazquez D, et al. The neuropeptide VIP limits human osteoclastogenesis: clinical associations with bone metabolism markers in patients with early arthritis. Biomedicines. 2021;9(12):1880.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez C, et al. A clinical approach for the use of VIP axis in inflammatory and autoimmune diseases. Int J Mol Sci. 2019;21(1):65.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif