Mind the Gap: Unraveling the Intricate Dance Between Alzheimer’s Disease and Related Dementias and Bone Health

Kacena MA, Plotkin LI, Fehrenbacher JC. The use of artificial intelligence in writing scientific review articles. Curr Osteoporos Rep. 2024;1–7. https://doi.org/10.1007/s11914-023-00852-0.

Margetts TJ, Karnik SJ, Wang HS, et al. Use of AI language engine ChatGPT 4.0 to write a scientific review article examining the intersection of alzheimer’s disease and bone. Curr Osteoporos Rep. 2024;1–5. https://doi.org/10.1007/s11914-023-00853-z.

Melton LJ 3rd, et al. Fracture risk in patients with Alzheimer’s disease. J Am Geriatr Soc. 1994;42(6):614–9.

Article  PubMed  Google Scholar 

Li S, et al. Amyloid beta peptide is elevated in osteoporotic bone tissues and enhances osteoclast function. Bone. 2014;61:164–75.

Article  CAS  PubMed  Google Scholar 

Zhou R, et al. Bone loss and osteoporosis are associated with conversion from mild cognitive impairment to Alzheimer’s disease. Curr Alzheimer Res. 2014;11(7):706–13.

Article  CAS  PubMed  Google Scholar 

Frame G, Bretland KA, Dengler-Crish CM. Mechanistic complexities of bone loss in Alzheimer’s disease: a review. Connect Tissue Res. 2020;61(1):4–18.

Article  PubMed  Google Scholar 

Culibrk RA, Hahn MS. The role of chronic inflammatory bone and joint disorders in the pathogenesis and progression of Alzheimer’s disease. Front Aging Neurosci. 2020;12: 583884.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar S, et al. Alzheimer’s disease and its association with bone health: a case-control study. Cureus. 2021;13(3): e13772.

PubMed  PubMed Central  Google Scholar 

Chen YH, Lo RY. Alzheimer’s disease and osteoporosis. Ci Ji Yi Xue Za Zhi. 2017;29(3):138–42.

PubMed  Google Scholar 

Prince M, et al. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res Ther. 2016;8(1):23.

Article  PubMed  PubMed Central  Google Scholar 

Alzheimer’s Disease International [ADI]. Improving healthcare for people living with dementia: Coverage, quality, and costs now and in the future. World Alzheimer report 2016. Alzheimer’s Disease International, London. 2016. Retrieved from https://www.alz.co.uk/research/files/WorldAlzheimer-Report2016.pdf.

Brightfocus.org. Alzheimer’s disease: Facts & Figures. 2022. (www.brightfocus.org/alzheimers/article/alzheimers-disease-facts-figures).

Alzheimer’s Association. Women at risk. 2023. (www.alz.org/alzheimers-dementia/facts-figures#:~:text=An%20estimated%206.7%20million%20Americans,Americans%20with%20Alzheimer's%20are%20women).

Mielke MM, Vemuri P, Rocca WA. Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. Clin Epidemiol. 2014;6:37–48.

Article  PubMed  PubMed Central  Google Scholar 

Henderson VW. Estrogens, episodic memory, and Alzheimer’s disease: a critical update. Semin Reprod Med. 2009;27(3):283–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iqbal J, Zaidi M. Understanding estrogen action during menopause. Endocrinology. 2009;150(8):3443–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rahman A, et al. Sex and gender driven modifiers of Alzheimer’s: the role for estrogenic control across age, race, medical, and lifestyle risks. Front Aging Neurosci. 2019;11:315.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rosende-Roca M, et al. The role of sex and gender in the selection of Alzheimer patients for clinical trial pre-screening. Alzheimers Res Ther. 2021;13(1):95.

Article  PubMed  PubMed Central  Google Scholar 

Kanis JA, et al. Intervention thresholds and the diagnosis of osteoporosis. J Bone Miner Res. 2015;30(10):1747–53.

Article  PubMed  Google Scholar 

Dalle Carbonare L, Giannini S. Bone microarchitecture as an important determinant of bone strength. J Endocrinol Invest. 2004;27(1): 99–105.

Brandi ML. Microarchitecture, the key to bone quality. Rheumatology (Oxford). 2009;48 Suppl 4:iv3–8.

Kanis JA, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013;24(1):23–57.

Article  CAS  PubMed  Google Scholar 

Sozen T, Ozisik L, Basaran NC. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56.

Article  PubMed  Google Scholar 

Ji MX, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med. 2015;1(1):9–13.

PubMed  PubMed Central  Google Scholar 

Cheng CH, Chen LR, Chen KH. Osteoporosis due to hormone imbalance: an overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int J Mol Sci. 2022;23(3):1376.

Haentjens P, et al. Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med. 2010;152(6):380–90.

Article  PubMed  PubMed Central  Google Scholar 

Bai J, et al. Association between dementia and mortality in the elderly patients undergoing hip fracture surgery: a meta-analysis. J Orthop Surg Res. 2018;13(1):298.

Article  PubMed  PubMed Central  Google Scholar 

Ha YC, et al. Effect of dementia on postoperative mortality in elderly patients with hip fracture. J Korean Med Sci. 2021;36(38): e238.

Article  PubMed  PubMed Central  Google Scholar 

Friedman SM, et al. Dementia and hip fractures: development of a pathogenic framework for understanding and studying risk. Geriatr Orthop Surg Rehabil. 2010;1(2):52–62.

Article  PubMed  PubMed Central  Google Scholar 

Zhou R, et al. Association between bone mineral density and the risk of Alzheimer’s disease. J Alzheimers Dis. 2011;24(1):101–8.

Article  PubMed  Google Scholar 

Dumitrescu L, et al. Genetic variants and functional pathways associated with resilience to Alzheimer’s disease. Brain. 2020;143(8):2561–75.

Article  PubMed  PubMed Central  Google Scholar 

• Castro-Aldrete L, et al. Sex and gender considerations in Alzheimer’s disease: The Women’s Brain Project contribution. Front Aging Neurosci. 2023;15:1105620. The Women’s Brain Project is a significant endeavor that focuses on understanding gender-specific vulnerabilities in various neurological disorders, including AD. This publication seems to shed light on the role of gender in the context of bone health and AD.

Cassidy L, et al. Oxidative stress in Alzheimer’s disease: a review on emergent natural polyphenolic therapeutics. Complement Ther Med. 2020;49: 102294.

Article  PubMed  Google Scholar 

Domazetovic V, et al. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab. 2017;14(2):209–16.

Article  PubMed  PubMed Central  Google Scholar 

Kimball JS, Johnson JP, Carlson DA. Oxidative stress and osteoporosis. J Bone Joint Surg Am. 2021;103(15):1451–61.

Article  PubMed  Google Scholar 

Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell Adh Migr. 2009;3(1):88–93.

Article  PubMed  PubMed Central  Google Scholar 

Kinney JW, et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (N Y). 2018;4:575–90.

Article  PubMed  Google Scholar 

Xie J, Van Hoecke L, Vandenbroucke RE. The impact of systemic inflammation on Alzheimer’s disease pathology. Front Immunol. 2021;12: 796867.

Article  CAS  PubMed  Google Scholar 

Ginaldi L, Di Benedetto MC, De Martinis M. Osteoporosis, inflammation and ageing. Immun Ageing. 2005;2:14.

Article  PubMed  PubMed Central  Google Scholar 

Zhang P, et al. Potential association of bone mineral density loss with cognitive impairment and central and peripheral amyloid-beta changes: a cross-sectional study. BMC Musculoskelet Disord. 2022;23(1):626.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang TH, Jiang Y, Xiao LP. Expression of amyloid beta-protein in bone tissue of APP/PS1 transgenic mouse. Zhonghua Yi Xue Za Zhi. 2013;93(1):65–8.

CAS  PubMed  Google Scholar 

•• Je LL, et al. Degradation of bone quality in a transgenic mouse model of Alzheimer’s disease. J Bone Miner Res. 2022;37 Suppl 12:2548–2565. Using a transgenic mouse model, this article offers a direct investigation into the degradation of bone quality in the context of AD. The use of a transgenic model adds weight to the findings, as it provides mechanistic insights into the AD-bone health relationship.

Dengler-Crish CM, et al. Evidence of Wnt/beta-catenin alterations in brain and bone of a tauopathy mouse model of Alzheimer’s disease. Neurobiol Aging. 2018;67:148–58.

Article  CAS  PubMed  Google Scholar 

Dengler-Crish CM, Smith MA, Wilson GN. Early evidence of low bone density and decreased serotonergic synthesis in the dorsal raphe of a tauopathy model of Alzheimer’s disease. J Alzheimers Dis. 2017;55(4):1605–19.

Article  CAS  PubMed  Google Scholar 

Cui S, et al. APPswe/Abeta regulation of osteoclast activation and RAGE expression in an age-dependent manner. J Bone Miner Res. 2011;26(5):1084–98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xia WF, et al. Swedish mutant APP suppresses osteoblast differentiation and causes osteoporotic deficit, which are ameliorated by N-acetyl-L-cysteine. J Bone Miner Res. 2013;28(10):2122–35.

Article  CAS  PubMed  Google Scholar 

• Zhang M, Hu S, Sun X. Alzheimer’s disease and impaired bone microarchitecture, regeneration and potential genetic links. Life (Basel). 2023;13(2). This article is particularly i

留言 (0)

沒有登入
gif