Traumatic brain injury-induced disruption of the circadian clock

Duclos C, Dumont M, Wiseman-Hakes C, Arbour C, Mongrain V, Gaudreault PO, Khoury S, Lavigne G, Desautels A, Gosselin N (2014) Sleep and wake disturbances following traumatic brain injury. Pathol Biol (Paris) 62:252–261. https://doi.org/10.1016/j.patbio.2014.05.014

Article  CAS  PubMed  Google Scholar 

Morse AM, Kothare S (2018) Sleep disorders and concussion. Handb Clin Neurol 158:127–134. https://doi.org/10.1016/B978-0-444-63954-7.00013-6

Article  PubMed  Google Scholar 

Wolfe LF, Sahni AS, Attarian H (2018) Sleep disorders in traumatic brain injury. NeuroRehabilitation 43:257–266. https://doi.org/10.3233/NRE-182583

Article  PubMed  Google Scholar 

El Cheikh HL, Mollard P, Bonnefont X (2019) Molecular and cellular networks in the suprachiasmatic nuclei. Int J Mol Sci 20:2052. https://doi.org/10.3390/ijms20082052

Article  CAS  Google Scholar 

Richards J, Gumz ML (2013) Mechanism of the circadian clock in physiology. Am J Physiol Regul Integr Comp Physiol 304:R1053–R1064. https://doi.org/10.1152/ajpregu.00066.2013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134:728–742. https://doi.org/10.1016/j.cell.2008.08.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paschos GK, FitzGerald GA (2010) Circadian clocks and vascular function. Circ Res 106:833–841. https://doi.org/10.1161/CIRCRESAHA.109.211706

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hastings MH, Reddy AB, Garabette M, King VM, Chahad-Ehlers S, O’Brien J, Maywood ES (2003) Expression of clock gene products in the suprachiasmatic nucleus in relation to circadian behaviour. Novartis Found Symp 253:203–217; discussion 102–209, 218–222, 281–204. https://doi.org/10.1002/0470090839.ch15

Hastings MH, Brancaccio M, Maywood ES (2014) Circadian pacemaking in cells and circuits of the suprachiasmatic nucleus. J Neuroendocrinol 26:2–10. https://doi.org/10.1111/jne.12125

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462. https://doi.org/10.1146/annurev-neuro-060909-153128

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalsbeek A, Perreau-Lenz S, Buijs RM (2006) A network of (autonomic) clock outputs. Chronobiol Int 23:521–535. https://doi.org/10.1080/07420520600651073

Article  CAS  PubMed  Google Scholar 

Maywood ES, O’Neill JS, Chesham JE, Hastings MH (2007) Minireview: the circadian clockwork of the suprachiasmatic nuclei–analysis of a cellular oscillator that drives endocrine rhythms. Endocrinology 148:5624–5634. https://doi.org/10.1210/en.2007-0660

Article  CAS  PubMed  Google Scholar 

Kuo LT, Lu HY, Huang AP (2021) Prognostic value of circadian rhythm of brain temperature in traumatic brain injury. J Pers Med 11:620. https://doi.org/10.3390/jpm11070620

Article  PubMed  PubMed Central  Google Scholar 

Sasaki M, Dunn L (2001) A model of acute subdural hematoma in the mouse. J Neurotrauma 18:1241–1246. https://doi.org/10.1089/089771501317095278

Article  CAS  PubMed  Google Scholar 

Rahimi Nedjat M, Wähmann M, Bächli H, Güresir E, Vatter H, Raabe A, Heimann A, Kempski O, Alessandri B (2013) Erythropoietin neuroprotection is enhanced by direct cortical application following subdural blood evacuation in a rat model of acute subdural hematoma. Neurosci 238:125–134. https://doi.org/10.1016/j.neuroscience.2013.01.067.]

Article  CAS  Google Scholar 

Alessandri B, Nishioka T, Heimann A, Bullock RM, Kempski O (2006) Caspase-dependent cell death involved in brain damage after acute subdural hematoma in rats. Brain Res 1111:196–202. https://doi.org/10.1016/j.brainres.2006.06.105

Article  CAS  PubMed  Google Scholar 

Cornelissen G (2014) Cosinor-based rhythmometry. Theor Biol Med Model 11:16. https://doi.org/10.1186/1742-4682-11-16

Article  PubMed  PubMed Central  Google Scholar 

Chen YL, Chuang JH, Wang HT, Chen HC, Liu WH, Yang MY (2021) Altered expression of circadian clock genes in patients with atrial fibrillation is associated with atrial high-rate episodes and left atrial remodeling. Diagnostics (Basel) 11:90. https://doi.org/10.3390/diagnostics11010090

Article  CAS  PubMed  Google Scholar 

Hida A, Kusanagi H, Satoh K, Kato T, Matsumoto Y, Echizenya M, Shimizu T, Higuchi S, Mishima K (2009) Expression profiles of PERIOD1, 2, and 3 in peripheral blood mononuclear cells from older subjects. Life Sci 84:33–37. https://doi.org/10.1016/j.lfs.2008.10.012

Article  CAS  PubMed  Google Scholar 

Hashimoto A, Uemura R, Sawada A, Nadatani Y, Otani K, Hosomi S, Nagami Y, Tanaka F, Kamata N, Taira K, Yamagami H, Tanigawa T, Watanabe T, Fujiwara Y (2019) Changes in clock genes expression in esophagus in rat reflux esophagitis. Dig Dis Sci 64:2132–2139. https://doi.org/10.1007/s10620-019-05546-1

Article  CAS  PubMed  Google Scholar 

Sládek M, Jindráková Z, Bendová Z, Sumová A (2007) Postnatal ontogenesis of the circadian clock within the rat liver. Am J Physiol Regul Integr Comp Physiol 292:R1224–R1229. https://doi.org/10.1152/ajpregu.00184.2006

Article  CAS  PubMed  Google Scholar 

Christiansen SL, Bouzinova EV, Fahrenkrug J, Wiborg O (2016) Altered expression pattern of clock genes in a rat model of depression. Int J Neuropsychopharmacol 19:pyw061. https://doi.org/10.1093/ijnp/pyw061

Ma TJ, Zhang ZW, Lu YL, Zhang YY, Tao DC, Liu YQ, Ma YX (2018) CLOCK and BMAL1 stabilize and activate RHOA to promote F-actin formation in cancer cells. Exp Mol Med 50:1–15. https://doi.org/10.1038/s12276-018-0156-4

Article  CAS  PubMed  Google Scholar 

Sakamoto A, Terui Y, Uemura T, Igarashi K, Kashiwagi K (2021) Translational regulation of clock genes BMAL1 and REV-ERBalpha by polyamines. Int J Mol Sci 22:137. https://doi.org/10.3390/ijms22031307

Satou R, Shibukawa Y, Kimura M, Sugihara N (2019) Light conditions affect rhythmic expression of aquaporin 5 and anoctamin 1 in rat submandibular glands. Heliyon 5:e02792. https://doi.org/10.1016/j.heliyon.2019.e02792

Article  PubMed  PubMed Central  Google Scholar 

Cornélissen G, Tamura K, Tarquini B, Germanò G, Fersini C, Rostagno C, Zaslavskaya RM, Carandente O, Carandente F, Halberg F (1994) Differences in some circadian patterns of cardiac arrhythmia, myocardial infarctions and other adverse vascular events. Chronobiol 21:79–88

Google Scholar 

Halberg F (1969) Chronobiology. Annu Rev Physiol 31:675–725. https://doi.org/10.1146/annurev.ph.31.030169.003331

Article  CAS  PubMed  Google Scholar 

Molcan L (2019) Time distributed data analysis by Cosinor. Online application. BioRxiv 805960. https://doi.org/10.1101/805960

Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937. https://doi.org/10.1016/s0092-8674(00)81199-x

Article  CAS  PubMed  Google Scholar 

Yagita K, Tamanini F, van Der Horst GT, Okamura H (2001) Molecular mechanisms of the biological clock in cultured fibroblasts. Sci 292:278–281. https://doi.org/10.1126/science.1059542

Article  CAS  Google Scholar 

Ishida N (2007) Circadian clock, cancer and lipid metabolism. Neurosci Res 57:483–490. https://doi.org/10.1016/j.neures.2006.12.012

Article  CAS  PubMed  Google Scholar 

Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15:271–277. https://doi.org/10.1093/hmg/ddl207

Bjarnason GA, Jordan RC, Wood PA, Li Q, Lincoln DW, Sothern RB, Hrushesky WJ, Ben-David Y (2001) Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol 158:1793–1801. https://doi.org/10.1016/S0002-9440(10)64135-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barnard AR, Nolan PM (2008) When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PLoS Genet 4:e1000040. https://doi.org/10.1371/journal.pgen.1000040

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci USA 101:5339–5346. https://doi.org/10.1073/pnas.0308709101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo H, Brewer JM, Lehman MN, Bittman EL (2006) Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J Neurosci 26:6406–6412. https://doi.org/10.1523/JNEUROSCI.4676-05.2006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dunlap JC, Loros JJ, Liu Y, Crosthwaite SK (1999) Eukaryotic circadian systems: cycles in common. Genes Cells 4:1–10. https://doi.org/10.1046/j.1365-2443.1999.00239.x

Article 

留言 (0)

沒有登入
gif