A Novel Cognitively Inspired Deep Learning Approach to Detect Drivable Areas for Self-driving Cars

Hu Y, Yang J, Chen L, Li K, Sima C, Zhu X, Chai S, Du S, Lin T, Wang W et al. Planning-oriented autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2023. p. 17853–62.

Xiong X, Liu Y, Yuan T, Wang Y, Wang Y, Zhao H. Neural map prior for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE; 2023. p. 17535–44.

Acun O, Küçükmanisa A, Genç Y, Urhan O. D3net (divide and detect drivable area net): Deep learning based drivable area detection and its embedded application. J Real-Time Image Proc. 2023;20(2):16.

Article  Google Scholar 

Zhong C, Li B, Tao W. Off-road drivable area detection: A learning-based approach exploiting lidar reflection texture information. Remote Sens. 2022;15(1):27.

Article  Google Scholar 

Qiao D, Zulkernine F. Drivable area detection using deep learning models for autonomous driving. In: Proceedings of the IEEE International Conference on Big Data. IEEE; 2021. p. 5233–8.

Maddern W, Pascoe G, Linegar C, Newman P. 1 year, 1000 km: The oxford robotcar dataset. Int J Robot Res. 2017;36(1):3–15.

Article  Google Scholar 

Kong H, Audibert J-Y, Ponce J. Vanishing point detection for road detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2009. p. 96–103.

Moghadam P, Starzyk JA, Wijesoma WS. Fast vanishing-point detection in unstructured environments. IEEE Trans Image Process. 2011;21(1):425–30.

Wang G, Zhang B, Wang H, Lin X, Li Y, Liu Z. Detection of the drivable area on high-speed road via yolact. SIViP. 2022;16(6):1623–30.

Article  Google Scholar 

Jiqing C, Depeng W, Teng L, Tian L, Huabin W. All-weather road drivable area segmentation method based on cyclegan. Vis Comput. 2022;39:1–17.

Google Scholar 

Ayub A, Wagner AR. Cbcl-pr: A cognitively inspired model for class-incremental learning in robotics. IEEE Trans Cognit Develop Syst. 2023;1–1.

Wang X, Liu J, Mei T, Luo J. Coseg: Cognitively inspired unsupervised generic event segmentation. IEEE Trans Neural Netw Learn Syst. 2023;1–11.

Fei GAO, Aidong LIU, Kai LIU, Erfu YANG, Hussain A. A novel visual attention method for target detection from SAR images. Chinese J Aeronaut. 2019;32(8):1946–58.

Article  Google Scholar 

Rolls ET. Brain computations and connectivity. Oxford University Press. 2023.

Mochizuki-Freeman J, Maini SS, Tiganj Z. Characterizing neural activity in cognitively inspired RL agents during an evidence accumulation task. In: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN). IEEE; 2023. p. 1–9.

Wichmann FA, Geirhos R. Are deep neural networks adequate behavioral models of human visual perception? Ann Rev Vis Sci. 2023;9:501–24.

Article  Google Scholar 

Räuker T, Ho A, Casper S, Hadfield-Menell D. Toward transparent AI: A survey on interpreting the inner structures of deep neural networks. In: Proceedings of the IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). IEEE; 2023. p. 464–83.

Fuchs A, Passarella A, Conti M. A cognitive framework for delegation between error-prone AI and human agents. In: Proceedings of the IEEE International Conference on Smart Computing (SMARTCOMP). IEEE; 2022. p. 317–22.

Ko M, Higgins L, Chrysler ST, Lord D. Effect of driving environment on drivers’ eye movements: Re-analyzing previously collected eye-tracker data. Technical report. 2010.

Deng T, Yang K, Li Y, Yan H. Where does the driver look? Top-down-based saliency detection in a traffic driving environment. IEEE Trans Intell Transp Syst. 2016;17(7):2051–62.

Article  Google Scholar 

Moghadam P, Dong JF. Road direction detection based on vanishing-point tracking. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE; 2012. p. 1553–60.

Zhou S, Jiang Y, Xi J, Gong J, Xiong G, Chen H. A novel lane detection based on geometrical model and Gabor filter. In: Proceedings of the IEEE Intelligent Vehicles Symposium. IEEE; 2010. p. 59–64.

Ziyu C, Zhen H. Simple road detection based on vanishing point. J Electron Imaging. 2014;23(3):033015–033015.

Article  Google Scholar 

Li Y, Ding W, Zhang X, Zhaojie J. Road detection algorithm for autonomous navigation systems based on dark channel prior and vanishing point in complex road scenes. Robot Auton Syst. 2016;85:1–11.

Article  Google Scholar 

Hirschmüller H, Innocent PR, Garibaldi J. Real-time correlation-based stereo vision with reduced border errors. Int J Comput Vis. 2002;47:229–46.

Article  Google Scholar 

Mogelmose A, Trivedi MM, Moeslund TB. Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey. IEEE Trans Intell Transport Syst. 2012;13(4):1484–97.

Article  Google Scholar 

Fritsch J, Kuehnl T, Geiger A. A new performance measure and evaluation benchmark for road detection algorithms. In: Proceedings of the IEEE Conference on Intelligent Transportation Systems. IEEE; 2013. p. 1693–1700.

Fan C, Jingbo X, Di S. Lane detection based on machine learning algorithm. TELKOMNIKA Indones J Electr Eng. 2014;12(2):1403–9.

Google Scholar 

Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2015. p. 3431–40.

He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: Proceedings of the European Conference on Computer Vision. Springer; 2016. p. 630–45.

Zhu Y, Newsam S. Densenet for dense flow. In: Proceedings of the IEEE International Conference on Image Processing. IEEE; 2017. p. 790–4.

Tang J, Li S, Liu P. A review of lane detection methods based on deep learning. Pattern Recogn. 2021;111:107623.

Article  Google Scholar 

Wang H, Fan R, Sun Y, Liu M. Dynamic fusion module evolves drivable area and road anomaly detection: A benchmark and algorithms. IEEE Trans Cybern. 2021;52(10):10750–60.

Article  Google Scholar 

Rawashdeh NA, Bos JP, Abu-Alrub NJ. Camera-lidar sensor fusion for drivable area detection in winter weather using convolutional neural networks. Opt Eng. 2023;62(3):031202–031202.

Google Scholar 

Li Y, Ren J, Yan Y, Liu Q, Ma P, Petrovski A, Sun H. Cbanet: An end-to-end cross band 2-d attention network for hyperspectral change detection in remote sensing. IEEE Trans Geosci Remote Sens. 2023;61:1–11.

Google Scholar 

Li H, Tianyang X, Xiao-Jun W, Jiwen L, Kittler J. Lrrnet: A novel representation learning guided fusion network for infrared and visible images. IEEE Trans Pattern Anal Mach Intell. 2023;45(9):11040–52.

Article  Google Scholar 

Ying Z, Li G, Zang X, Wang R, Wang W. A novel shadow-free feature extractor for real-time road detection. In: Proceedings of the ACM International Conference on Multimedia. ACM; 2016. p. 611–5.

Illingworth J, Kittler J. The adaptive hough transform. IEEE Trans Pattern Anal Mach Intell. 1987;PAMI-9(5):690–8.

Achanta R, Hemami S, Estrada F, Susstrunk S. Frequency-tuned salient region detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2009. p. 1597–604.

Jiang F, Kong B, Li J, Dashtipour K, Gogate M. Robust visual saliency optimization based on bidirectional Markov chains. Cogn Comput. 2021;13:69–80.

Article  Google Scholar 

Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–6.

Article  Google Scholar 

Liu F, Fang M. Semantic segmentation of underwater images based on improved deeplab. J Mar Sci Eng. 2020;8(3):188.

Article  Google Scholar 

Bui TH, Nobuyama E, Saitoh T. A texture-based local soft voting method for vanishing point detection from a single road image. IEICE Trans Inf Syst. 2013;96(3):690–8.

Article  Google Scholar 

Ying Z, Li G, Tan G. An illumination-robust approach for feature-based road detection. In: Proceedings of the IEEE International Symposium on Multimedia. IEEE; 2015. p. 278–81.

Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision. Springer; 2018. p. 801–18.

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 [Preprint]. 2017. Available from: http://arxiv.org/abs/1704.04861.

Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2017. p. 1251–8.

Yu F, Koltun V, Funkhouser T. Dilated residual networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE; 2017. p. 472–80.

留言 (0)

沒有登入
gif