Quantitative Skeletal Imaging and Image-Based Modeling in Pediatric Orthopaedics

• Schwarzenberg P, Darwiche S, Yoon RS, Dailey HL. Imaging modalities to assess fracture healing. Curr Osteoporos Rep. 2020;18(3):169–79. https://doi.org/10.1007/s11914-020-00584-5. This paper outlines use of radiographic, CT, DXA, and MRI-based approaches for analyzing fracture union and non-union. It additionally highlights the information that can be derived from finite element modeling of bone calluses and compares novel techniques to the radiographic gold standard.

Article  PubMed  Google Scholar 

Otjen J, et al. Foot and ankle musculoskeletal imaging of pediatric patients with cerebral palsy. AJR Am J Roentgenol. 2020;214(6):1389–97. https://doi.org/10.2214/AJR.19.22354.

Article  PubMed  Google Scholar 

Berkeley R, Tennant S, Saifuddin A. Multimodality imaging of the paediatric flatfoot. Skeletal Radiol. 2021;50(11):2133–49. https://doi.org/10.1007/s00256-021-03806-8.

Article  PubMed  Google Scholar 

Fayad LM, Bluemke DA, Weber KL, Fishman EK. Characterization of pediatric skeletal tumors and tumor-like conditions: specific cross-sectional imaging signs. Skeletal Radiol. 2006;35(5):259–68. https://doi.org/10.1007/s00256-006-0079-3.

Article  PubMed  Google Scholar 

Paul AR, Adamo MA. Non-accidental trauma in pediatric patients: a review of epidemiology, pathophysiology, diagnosis and treatment. Transl Pediatr. 2014;3(3):195–207. https://doi.org/10.3978/j.issn.2224-4336.2014.06.01.

Article  PubMed  PubMed Central  Google Scholar 

Duffy SO, Squires J, Fromkin JB, Berger RP. Use of skeletal surveys to evaluate for physical abuse: analysis of 703 consecutive skeletal surveys. Pediatrics. 2011;127(1):e47-52. https://doi.org/10.1542/peds.2010-0298.

Article  PubMed  PubMed Central  Google Scholar 

Jarrett DY, Ecklund K. EOS imaging of scoliosis, leg length discrepancy and alignment. Semin Roentgenol. 2021;56(3):228–44. https://doi.org/10.1053/j.ro.2021.06.001.

Article  PubMed  Google Scholar 

Hecker A, Lerch TD, Egli RJ, Liechti EF, Klenke FM. The EOS 3D imaging system reliably measures posterior tibial slope. J Orthop Surg Res. 2021;16(1):388. https://doi.org/10.1186/s13018-021-02529-9.

Article  PubMed  PubMed Central  Google Scholar 

Zember J, Vega P, Rossi I, Rosenberg ZS. Normal development imaging pitfalls and injuries in the pediatric shoulder. Pediatr Radiol. 2019;49(12):1617–28. https://doi.org/10.1007/s00247-019-04512-3.

Article  PubMed  Google Scholar 

Cavallo F, Mohn A, Chiarelli F, Giannini C. Evaluation of bone age in children: a mini-review. Front Pediatr. 2021;9:580314. https://doi.org/10.3389/fped.2021.580314.

Article  PubMed  PubMed Central  Google Scholar 

De Sanctis V, Di Maio S, Soliman AT, Raiola G, Elalaily R, Millimaggi G. Hand X-ray in pediatric endocrinology: skeletal age assessment and beyond. Indian J Endocrinol Metab. 2014;18(Suppl 1):S63-71. https://doi.org/10.4103/2230-8210.145076.

Article  PubMed  PubMed Central  Google Scholar 

Thevenot J, et al. Trabecular homogeneity index derived from plain radiograph to evaluate bone quality. J Bone Miner Res. 2013;28(12):2584–91. https://doi.org/10.1002/jbmr.1987.

Article  PubMed  Google Scholar 

Huber MB, et al. Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs. Med Phys. 2009;36(11):5089–98. https://doi.org/10.1118/1.3215535.

Article  CAS  PubMed  Google Scholar 

Clavert P, et al. How to determine the bone mineral density of the distal humerus with radiographic tools? Surg Radiol Anat. 2016;38(4):389–93. https://doi.org/10.1007/s00276-015-1569-6.

Article  PubMed  Google Scholar 

•• Wang F, Zheng L, Theopold J, Schleifenbaum S, Heyde CE, Osterhoff G. Methods for bone quality assessment in human bone tissue: a systematic review. J Orthop Surg Res. 2022;17(1):174. https://doi.org/10.1186/s13018-022-03041-4. This paper reviews the methods for bone density, microstructrue, and quality assessment using a variety of imaging modalieties including radiographs, DXA, CT, and MRI as well as mechanical testing methods used to test bone quality in a research setting. It summarizes the benefits and pitfalls of each modality and highlights the importance of quantitative bone assessment.

Article  PubMed  PubMed Central  Google Scholar 

Kim SB, et al. Reliability of the EOS imaging system for assessment of the spinal and pelvic alignment in the sagittal plane. Clin Orthop Surg. 2018;10(4):500–7. https://doi.org/10.4055/cios.2018.10.4.500.

Article  PubMed  PubMed Central  Google Scholar 

Machida M, Rocos B, Zabjek K, Lebel DE. A comparison of the reliability and vulnerability of 3D sterEOS and 2D EOS when measuring the sagittal spinal alignment of patients with adolescent idiopathic scoliosis. Spine Deform. 2022;10(5):1029–34. https://doi.org/10.1007/s43390-022-00499-4.

Article  PubMed  Google Scholar 

Sun J, et al. Automatic video analysis framework for exposure region recognition in X-ray imaging automation. IEEE J Biomed Health Inform. 2022;26(9):4359–70. https://doi.org/10.1109/JBHI.2022.3172369.

Article  PubMed  Google Scholar 

Reddy PK, Kanakatte A, Gubbi J, Poduval M, Ghose A, Purushothaman B. Anatomical landmark detection using deep appearance-context network. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:3569–72. https://doi.org/10.1109/EMBC46164.2021.9630457.

Article  PubMed  Google Scholar 

Sa R, et al. Intervertebral disc detection in X-ray images using faster R-CNN. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:564–7. https://doi.org/10.1109/EMBC.2017.8036887.

Article  Google Scholar 

Kundu R, Das R, Geem ZW, Han GT, Sarkar R. Pneumonia detection in chest X-ray images using an ensemble of deep learning models. PLoS ONE. 2021;16(9):e0256630. https://doi.org/10.1371/journal.pone.0256630.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Widodo CS, Naba A, Mahasin MM, Yueniwati Y, Putranto TA, Patra PI. UBNet: deep learning-based approach for automatic X-ray image detection of pneumonia and COVID-19 patients. J Xray Sci Technol. 2022;30(1):57–71. https://doi.org/10.3233/XST-211005.

Article  CAS  PubMed  Google Scholar 

Reis EP, et al. BRAX, Brazilian labeled chest x-ray dataset. Sci Data. 2022;9(1):487. https://doi.org/10.1038/s41597-022-01608-8.

Article  PubMed  PubMed Central  Google Scholar 

Shevroja E, Cafarelli FP, Guglielmi G, Hans D. DXA parameters, trabecular bone score (TBS) and bone mineral density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine. 2021;74(1):20–8. https://doi.org/10.1007/s12020-021-02806-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martel D, Monga A, Chang G. Osteoporosis imaging. Radiol Clin North Am. 2022;60(4):537–45. https://doi.org/10.1016/j.rcl.2022.02.003.

Article  PubMed  Google Scholar 

Havrda JB (2012)Pediatric bone densitometry. Radiol Technol 84(2):155–77

Wasserman H, O’Donnell JM, Gordon CM. Use of dual energy X-ray absorptiometry in pediatric patients. Bone. 2017;104:84–90. https://doi.org/10.1016/j.bone.2016.12.008.

Article  PubMed  Google Scholar 

Gordon RJ, Gordon CM. Bone health in pediatric patients with IBD: what is new? Curr Osteoporos Rep. 2021;19(4):429–35. https://doi.org/10.1007/s11914-021-00691-x.

Article  PubMed  Google Scholar 

Wasserman H, Gordon CM. Bone mineralization and fracture risk assessment in the pediatric population. J Clin Densitom. 2017;20(3):389–96. https://doi.org/10.1016/j.jocd.2017.06.007.

Article  PubMed  Google Scholar 

Borga M, et al. Advanced body composition assessment: from body mass index to body composition profiling. J Investig Med. 2018;66(5):1–9. https://doi.org/10.1136/jim-2018-000722.

Article  PubMed  PubMed Central  Google Scholar 

Shepherd JA, Ng BK, Sommer MJ, Heymsfield SB. Body composition by DXA. Bone. 2017;104:101–5. https://doi.org/10.1016/j.bone.2017.06.010.

Article  PubMed  PubMed Central  Google Scholar 

Di Iorgi N, Maruca K, Patti G, Mora S. Update on bone density measurements and their interpretation in children and adolescents. Best Pract Res Clin Endocrinol Metab. 2018;32(4):477–98. https://doi.org/10.1016/j.beem.2018.06.002.

Article  PubMed  Google Scholar 

Bowman L, Loucks AB. In vivo assessment of cortical bone fragility. Curr Osteoporos Rep. 2020;18(1):13–22. https://doi.org/10.1007/s11914-020-00558-7.

Article  PubMed  PubMed Central  Google Scholar 

Litrenta J, Masrouha K, Wasterlain A, Castaneda P. Ultrasound evaluation of pediatric orthopaedic patients. J Am Acad Orthop Surg. 2020;28(16):e696–705. https://doi.org/10.5435/JAAOS-D-17-00895.

Article  PubMed  Google Scholar 

Piccolo CL, et al. Pediatric musculoskeletal injuries: role of ultrasound and magnetic resonance imaging. Musculoskelet Surg. 2017;101(Suppl 1):85–102. https://doi.org/10.1007/s12306-017-0452-5.

Article  CAS  PubMed  Google Scholar 

Karnik AS, Karnik A, Joshi A. Ultrasound examination of pediatric musculoskeletal diseases and neonatal spine. Indian J Pediatr. 2016;83(6):565–77. https://doi.org/10.1007/s12098-015-1957-2.

Article  PubMed  Google Scholar 

Riccabona M. Pediatric three-dimensional ultrasound: basics and potential clinical value. Clin Imaging. 200

留言 (0)

沒有登入
gif