SARS-CoV-2 and its Multifaceted Impact on Bone Health: Mechanisms and Clinical Evidence

Kacena MA, Plotkin LI, Fehrenbacher JC. The use of artificial intelligence in writing scientific review articles. Curr Osteoporos Rep. 2024. https://doi.org/10.1007/s11914-023-00852-0.

Awosanya OD, Harris A, Creecy A, et al. The utility of AI in writing a scientific review article on the impacts of COVID-19 on musculoskeletal health. Curr Osteoporos Rep. 2024. https://doi.org/10.1007/s11914-023-00855-x .

Guan W-J, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–20.

Article  CAS  PubMed  Google Scholar 

Chams N, et al. COVID-19: a multidisciplinary review. Frontiers Public Health. 2020:8.

Richardson S, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ragab D, et al. The COVID-19 cytokine storm; what we know so far. Front Immunol. 2020;11

Bhatraju PK, et al. Covid-19 in critically ill patients in the Seattle region — case series. N Engl J Med. 2020;382(21):2012–22.

Article  CAS  PubMed  Google Scholar 

Amiri-Dashatan N, et al. Increased inflammatory markers correlate with liver damage and predict severe COVID-19: a systematic review and meta-analysis. Gastroenterol Hepatol Bed Bench. 2020;13(4):282–91.

PubMed  PubMed Central  Google Scholar 

Barton LM, et al. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153(6):725–33.

Article  CAS  PubMed  Google Scholar 

von Stillfried S, et al. First report from the German COVID-19 autopsy registry. Lancet Regional Health - Europe. 2022;15:100330.

Article  Google Scholar 

Syed F, et al. Excessive matrix Metalloproteinase-1 and Hyperactivation of endothelial cells occurred in COVID-19 patients and were associated with the severity of COVID-19. J Infect Dis. 2021;224(1):60–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parotto M, et al. Post-acute sequelae of COVID-19: understanding and addressing the burden of multisystem manifestations. Lancet Respir Med. 2023;11(8):739–54.

Article  PubMed  Google Scholar 

Disser NP, et al. Musculoskeletal consequences of COVID-19. J Bone Joint Surg Am. 2020;102(14):1197–204.

Article  PubMed  Google Scholar 

Awosanya OD, et al. The impacts of COVID-19 on musculoskeletal health. Curr Osteoporosis Reports. 2022;20(4):213–25.

Article  PubMed  Google Scholar 

Sapra L, et al. Long-term implications of COVID-19 on bone health: pathophysiology and therapeutics. Inflamm Res. 2022;71(9):1025–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brogan M, Ross MJ. COVID-19 and kidney disease. Annu Rev Med. 2023;74(1):1–13.

Article  CAS  PubMed  Google Scholar 

Gambella A, et al. Spectrum of kidney injury following COVID-19 disease: renal biopsy findings in a single Italian pathology service. Biomolecules. 2022;12. https://doi.org/10.3390/biom12020298.

Li J, et al. Epidemiology of COVID-19: a systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J Med Virol. 2021;93(3):1449–58.

Article  CAS  PubMed  Google Scholar 

Pasrija R, Naime M. The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease. Int Immunopharmacol. 2021;90:107225.

Article  CAS  PubMed  Google Scholar 

•• di Filippo L, et al. Radiological thoracic vertebral fractures are highly prevalent in COVID-19 and predict disease outcomes. J Clin Endocrinol Metabol. 2021;106(2):e602–e614. This paper emphasizes the potential impacts of COVID-19 on bone health, highlighting increased vertebral fractures in patients with SARS-CoV-2, and demonstrating the importance of monitoring bone health in COVID-19 patients

Tahtabasi M, et al. The prognostic value of vertebral bone density on chest CT in hospitalized COVID-19 patients. J Clin Densitom. 2021;24(4):506–15.

Article  PubMed  PubMed Central  Google Scholar 

Queiroz-Junior CM, et al. The angiotensin converting enzyme 2/angiotensin-(1-7)/mas receptor axis as a key player in alveolar bone remodeling. Bone. 2019;128:115041.

Article  CAS  PubMed  Google Scholar 

Obitsu S, et al. Potential enhancement of osteoclastogenesis by severe acute respiratory syndrome coronavirus 3a/X1 protein. Arch Virol. 2009;154(9):1457–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duarte, C., et al., Age-dependent effects of the recombinant spike protein/SARS-CoV-2 on the M–CSF– and IL-34-differentiated macrophages in vitro. Biochem Biophys Res Commun, 2021. 546: p. 97-102.

Muñoz-Fontela C, et al. Animal models for COVID-19. Nature. 2020;586(7830):509–15.

Article  PubMed  PubMed Central  Google Scholar 

Winkler ES, et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nat Immunol. 2020;21(11):1327–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chan JF-W, et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a Golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis. 2020;71(9):2428–46.

CAS  PubMed  Google Scholar 

Hassler L, et al. A novel soluble ACE2 protein provides lung and kidney protection in mice susceptible to lethal SARS-CoV-2 infection. J Am Soc Nephrol. 2022;33(7)

Sun J, et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell. 2020;182(3):734–743.e5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piplani S, et al. In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin. Sci Rep. 2021;11(1):1–13.

Google Scholar 

•• Awosanya, O.D., et al., Osteoclast-mediated bone loss observed in a COVID-19 mouse model. Bone, 2022. 154: p. 116227. This article is important because it demonstrates a significant reduction in bone parameters and a corresponding increase in osteoclast activity following SARS-CoV-2 infection in a COVID-19 mouse model, providing insights into potential skeletal impacts of the virus in humans.

• Haudenschild, A.K., et al., Acute bone loss following SARS-CoV-2 infection in mice. Journal of Orthopaedic Research, 2023. 41(9): p. 1945-1952. Utilizing a humanized mouse model, this study demonstrates that SARS-CoV-2 infection leads to acute bone loss, increased osteoclast activity, and thinner growth plates, potentially increasing the risk of fragility fractures in older patients and affecting skeletal growth in younger ones.

•• Qiao, W., et al., SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters. Nat Commun, 2022. 13(1): p. 2539. This paper underscores the direct and indirect impacts of COVID-19 on bone health, emphasizing the increased risk of rapid bone loss and fractures, the role of vitamin D in immunity, and the need for further research on long-term effects and management strategies.

Gao J, et al. Neuropilin-1-mediated SARS-CoV-2 infection in bone marrow-derived macrophages inhibits osteoclast differentiation. Advanced Biology. 2022;6(5):2200007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aschman T, et al. Association between SARS-CoV-2 infection and immune-mediated myopathy in patients who have died. JAMA Neurology. 2021;78(8):948–60.

Article  PubMed  Google Scholar 

Hannah JR, et al. P049 skeletal muscle involvement in COVID-19 infection: a case report and systematic review. Rheumatology. 2021;60(Supplement_1):p. keab247. 046.

Zioupos P, Currey JD, Hammer AJ. The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res. 1999;45:108–16.

Article  CAS  PubMed  Google Scholar 

Dandona P, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004;25(1):4–7.

Article  CAS  PubMed  Google Scholar 

Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42.

Article  CAS  PubMed  Google Scholar 

Zhang F, et al. IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Med. 2021;13(1):64.

Article  PubMed  PubMed Central  Google Scholar 

Murakami T, et al. Activation and function of NLRP3 Inflammasome in bone and joint-related diseases. Int J Mol Sci. 2022;23. https://doi.org/10.3390/ijms23105365.

Alippe Y, et al. Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation. Sci Rep. 2017;7(1):6630.

Article  PubMed  PubMed Central  Google Scholar 

Guo C, et al. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin Exp Immunol. 2018;194(2):231–43.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang X, et al. Tofacitinib restores the balance of γδTreg/γδT17 cells in rheumatoid arthritis by inhibiting the NLRP3 inflammasome. Theranostics. 2021;11(3):1446–57.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rebeccah JM, et al. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis. 2014;73(6):1202.

Article  Google Scholar 

Jin C, et al. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc Natl Acad Sci. 2011;108(36):14867–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonar SL, et al. Constitutively activated NLRP3 Inflammasome causes inflammation and abnormal skeletal development in mice. PLoS One. 2012;7(4):e35979.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang N, et al. NLRP3 Inflammasome: a new target for prevention and control of osteoporosis? Front Endocrinol. 2021;12

Mansoori MN, et al. IL-18BP is decreased in osteoporotic women: prevents Inflammasome mediated IL-18 activation and reduces Th17 differentiation. Sci Rep. 2016;6:33680.

Article  CAS 

留言 (0)

沒有登入
gif