Mind Gaps and Bone Snaps: Exploring the Connection Between Alzheimer’s Disease and Osteoporosis

Kacena MA, Plotkin LI, Fehrenbacher JC. The use of artificial intelligence in writing scientific review articles. Curr Osteoporos Rep. 2024. https://doi.org/10.1007/s11914-023-00852-0.

Margetts TJ, Karnik SJ, Wang HS, et al. Use of AI language engine ChatGPT 4.0 to write a scientific review article examining the intersection of alzheimer’s disease and bone. Curr Osteoporos Rep. 2024. https://doi.org/10.1007/s11914-023-00853-z.

Tsai CH, et al. Fracture as an independent risk factor of dementia: a nationwide population-based cohort study. Medicine (Baltimore). 2014;93(26): e188.

Article  PubMed  Google Scholar 

Friedman SM, et al. Dementia and hip fractures: development of a pathogenic framework for understanding and studying risk. Geriatr Orthop Surg Rehabil. 2010;1(2):52–62.

Article  PubMed  PubMed Central  Google Scholar 

Lui LY, et al. Bone loss predicts subsequent cognitive decline in older women: the study of osteoporotic fractures. J Am Geriatr Soc. 2003;51(1):38–43.

Article  PubMed  Google Scholar 

Yuan J, et al. The potential influence of bone-derived modulators on the progression of Alzheimer’s disease. J Alzheimers Dis. 2019;69(1):59–70.

Article  PubMed  Google Scholar 

2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19(4):1598–695. https://doi.org/10.1002/alz.13016.

Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules. 2020;25(24):5789. https://doi.org/10.3390/molecules25245789.

Chen GF, et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38(9):1205–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cras P, et al. Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc Natl Acad Sci U S A. 1991;88(17):7552–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med. 2010;77(1):32–42.

Article  PubMed  PubMed Central  Google Scholar 

Armstrong RA. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Folia Neuropathol. 2009;47(4):289–99.

CAS  PubMed  Google Scholar 

Xia WF, et al. Swedish mutant APP suppresses osteoblast differentiation and causes osteoporotic deficit, which are ameliorated by N-acetyl-L-cysteine. J Bone Miner Res. 2013;28(10):2122–35.

Article  CAS  PubMed  Google Scholar 

Paris D, et al. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci Lett. 2004;366(1):80–5.

Article  CAS  PubMed  Google Scholar 

Tabaton M, Piccini A. Role of water-soluble amyloid-beta in the pathogenesis of Alzheimer’s disease. Int J Exp Pathol. 2005;86(3):139–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Metcalfe MJ, Figueiredo-Pereira ME. Relationship between tau pathology and neuroinflammation in Alzheimer’s disease. Mt Sinai J Med. 2010;77(1):50–8.

Article  PubMed  PubMed Central  Google Scholar 

Du X, Wang X, Geng M. Alzheimer’s disease hypothesis and related therapies. Transl Neurodegener. 2018;7:2.

Article  PubMed  PubMed Central  Google Scholar 

• van Dyck CH, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388(1):9–21. This study reported a reduction in cognitive and functional decline in AD patients treated with lecanemab, a new monoclonal antibody that targets amyloid beta-soluble protofibrils.

Sarafrazi N, Wambogo EA, Shepherd JA. Osteoporosis or low bone mass in older adults: United States, 2017–2018. NCHS Data Brief. 2021;405:1–8.

Google Scholar 

Sozen T, Ozisik L, Basaran NC. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56.

Article  PubMed  Google Scholar 

•• JE LL, et al. Degradation of bone quality in a transgenic mouse model of Alzheimer’s disease. J Bone Miner Res. 2022;37(12):2548–65. https://doi.org/10.1002/jbmr.4723. This primary research study utilized a 5xFAD transgenic model of AD to establish a relationship between elevated Aβ levels and impairment of bone health in mice.

Dengler-Crish CM, Elefteriou F. Shared mechanisms: osteoporosis and Alzheimer’s disease? Aging (Albany NY). 2019;11(5):1317–8.

Article  CAS  PubMed  Google Scholar 

Weller II. The relation between hip fracture and Alzheimer’s disease in the canadian national population health survey health institutions data, 1994–1995 A cross-sectional study. Ann Epidemiol. 2000;10(7):461.

Article  CAS  PubMed  Google Scholar 

Chen YH, Lo RY. Alzheimer’s disease and osteoporosis. Ci Ji Yi Xue Za Zhi. 2017;29(3):138–42.

PubMed  Google Scholar 

Hu H, et al. No genetic causal association between Alzheimer’s disease and osteoporosis: a bidirectional two-sample Mendelian randomization study. Front Aging Neurosci. 2023;15:1090223.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia L, Pina-Crespo J, Li Y. Restoring Wnt/beta-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain. 2019;12(1):104.

Article  PubMed  PubMed Central  Google Scholar 

Garcia-Velazquez L, Arias C. The emerging role of Wnt signaling dysregulation in the understanding and modification of age-associated diseases. Ageing Res Rev. 2017;37:135–45.

Article  CAS  PubMed  Google Scholar 

De Ferrari GV, et al. Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. Proc Natl Acad Sci U S A. 2007;104(22):9434–9.

Article  PubMed  PubMed Central  Google Scholar 

Alarcon MA, et al. A novel functional low-density lipoprotein receptor-related protein 6 gene alternative splice variant is associated with Alzheimer’s disease. Neurobiol Aging. 2013;34(6):1709.e9-18.

Article  CAS  PubMed  Google Scholar 

Liu CC, et al. Deficiency in LRP6-mediated Wnt signaling contributes to synaptic abnormalities and amyloid pathology in Alzheimer’s disease. Neuron. 2014;84(1):63–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kramer I, et al. Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol. 2010;30(12):3071–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pederson L, et al. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A. 2008;105(52):20764–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henriksen K, et al. Local communication on and within bone controls bone remodeling. Bone. 2009;44(6):1026–33.

Article  PubMed  Google Scholar 

Martin T, Gooi JH, Sims NA. Molecular mechanisms in coupling of bone formation to resorption. Crit Rev Eukaryot Gene Expr. 2009;19(1):73–88.

Article  CAS  PubMed  Google Scholar 

Inestrosa NC, Varela-Nallar L. Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol. 2014;6(1):64–74.

Article  PubMed  Google Scholar 

Dengler-Crish CM, et al. Evidence of Wnt/beta-catenin alterations in brain and bone of a tauopathy mouse model of Alzheimer’s disease. Neurobiol Aging. 2018;67:148–58.

Article  CAS  PubMed  Google Scholar 

Adair TH, Montani JP. Angiogenesis. San Rafael (CA). Integrated Systems Physiology: from Molecule to Function to Disease. 2010. https://doi.org/10.4199/C00017ED1V01Y201009ISP009.

Colnot CI, Helms JA. A molecular analysis of matrix remodeling and angiogenesis during long bone development. Mech Dev. 2001;100(2):245–50.

Article  CAS  PubMed  Google Scholar 

Gerstenfeld LC, et al. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003;88(5):873–84.

Article  CAS  PubMed  Google Scholar 

Saran U, Gemini Piperni S, Chatterjee S. Role of angiogenesis in bone repair. Arch Biochem Biophys. 2014;561:109–17.

Article  CAS  PubMed  Google Scholar 

Bhatti FUR, et al. The effects of high fat diet, bone healing, and BMP-2 treatment on endothelial cell growth and function. Bone. 2021;146:115883.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Claudio L. Ultrastructural features of the blood-brain barrier in biopsy tissue from Alzheimer’s disease patients. Acta Neuropathol. 1996;91(1):6–14.

Article  CAS  PubMed  Google Scholar 

Kalaria RN, Hedera P. Differential degeneration of the cerebral microvasculature in Alzheimer’s disease. NeuroReport. 1995;6(3):477–80.

Article  CAS  PubMed  Google Scholar 

Mancardi GL, et al. Thickening of the basement membrane of cortical capillaries in Alzheimer’s disease. Acta Neuropathol. 1980;49(1):79–83.

留言 (0)

沒有登入
gif