COVID-19 and Bone Loss: A Review of Risk Factors, Mechanisms, and Future Directions

Kacena MA, Plotkin LI, Fehrenbacher JC. The use of artificial intelligence in writing scientific review articles. Curr Osteoporos Rep. https://doi.org/10.1007/s11914-023-00852-0.

Awosanya OD, Harris A, Creecy A, et al. The utility of AI in writing a scientific review article on the impacts of COVID-19 on musculoskeletal health. Curr Osteoporos Rep. 2024. https://doi.org/10.1007/s11914-023-00855-x.

WHO Coronavirus (COVID-19) Dashboard. 2023, World Health Organization.

Chams N, et al. COVID-19: a multidisciplinary review. Frontiers in Public Health, 2020. 8.

Guan W-J, et al. Clinical characteristics of coronavirus disease 2019 in China. New England J Med. 2020;382(18):1708–20. https://doi.org/10.1056/NEJMoa2002032.

Article  CAS  Google Scholar 

Richardson S, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bhatraju PK, et al. Covid-19 in critically ill patients in the Seattle region — case series. New England J Med. 2020;382(21):2012–22.

Article  CAS  Google Scholar 

Barton LM, et al. COVID-19 autopsies, Oklahoma, USA. Ame J Clin Pathol. 2020;153(6):725–33.

Article  CAS  Google Scholar 

von Stillfried S, et al. First report from the German COVID-19 autopsy registry. The Lancet Regional Health - Europe. 2022;15:100330.

Article  Google Scholar 

Disser NP, et al. Musculoskeletal consequences of COVID-19. J Bone Joint Surg Am. 2020;102(14):1197–204.

Article  PubMed  Google Scholar 

Brogan M, Ross MJ. COVID-19 and kidney disease. Annual Rev Med. 2023;74(1):1–13.

Article  CAS  Google Scholar 

Gambella A, et al. Spectrum of kidney injury following COVID-19 disease: renal biopsy findings in a single italian pathology service. Biomolecules, 2022;12. https://doi.org/10.3390/biom12020298.

Gómez-Ochoa SA, et al. COVID-19 in health-care workers: a living systematic review and meta-analysis of prevalence, risk factors, clinical characteristics, and outcomes. Am J Epidemiol. 2021;190(1):161–75.

Article  PubMed  Google Scholar 

Li J, et al. Epidemiology of COVID-19: a systematic review and meta-analysis of clinical characteristics, risk factors, and outcomes. J Med Virol. 2021;93(3):1449–58.

Article  PubMed  CAS  Google Scholar 

Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 cytokine storm; what we know so far. Front Immunol. 2020;11:1446. https://doi.org/10.3389/fimmu.2020.01446.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pasrija R, Naime M. The deregulated immune reaction and cytokines release storm (CRS) in COVID-19 disease. Int Immunopharmacol. 2021;90:107225.

Article  PubMed  CAS  Google Scholar 

Syed F, et al. Excessive matrix metalloproteinase-1 and hyperactivation of endothelial cells occurred in COVID-19 patients and were associated with the severity of COVID-19. J Infectious Dis. 2021;224(1):60–9.

Article  CAS  Google Scholar 

Zhang F, et al. IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. Genome Med. 2021;13(1):64.

Article  PubMed  PubMed Central  Google Scholar 

Amiri-Dashatan N, et al. Increased inflammatory markers correlate with liver damage and predict severe COVID-19: a systematic review and meta-analysis. Gastroenterol Hepatol Bed Bench. 2020;13(4):282–91.

PubMed  PubMed Central  Google Scholar 

Parotto M, et al. Post-acute sequelae of COVID-19: understanding and addressing the burden of multisystem manifestations. Lancet Respiratory Med. 2023;11(8):739–54.

Article  Google Scholar 

Awosanya OD, et al. The Impacts of COVID-19 on Musculoskeletal Health. Current Osteoporosis Rep. 2022;20(4):213–25.

Article  Google Scholar 

Sapra L, et al. Long-term implications of COVID-19 on bone health: pathophysiology and therapeutics. Inflammation Res. 2022;71(9):1025–40.

Article  CAS  Google Scholar 

di Filippo L, et al. Hypocalcemia is a distinctive biochemical feature of hospitalized COVID-19 patients. Endocrine. 2021;71(1):9–13.

Article  PubMed  Google Scholar 

Di Filippo L, et al. Hypocalcemia is highly prevalent and predicts hospitalization in patients with COVID-19. Endocrine. 2020;68(3):475–8.

Article  PubMed  PubMed Central  Google Scholar 

•• Kerschan-Schindl, K., et al., Moderate COVID-19 disease is associated with reduced bone turnover. Journal of Bone and Mineral Research, 2023. An interesting study determining alterations in serum bone turnover markers were present in hospitalized COVID-19 patients that did not require mechanical ventilation, indicating that even moderate disease could affect fracture risk.

•• di Filippo L, et al. Radiological thoracic vertebral fractures are highly prevalent in COVID-19 and predict disease outcomes. The Journal of Clinical Endocrinology & Metabolism. 2021;106(2):e602–14. This study determined that vertebral fractures can be used to predict disease outcomes, either as a measure of marker of frailty or as a measure of severe disease, and indicates potential skeletal effects of SARS-CoV-2 infection.

Article  Google Scholar 

Battisti S, et al. Vertebral fractures and mortality risk in hospitalised patients during the COVID-19 pandemic emergency. Endocrine. 2021;74(3):461–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

di Filippo L, et al. Vertebral fractures at hospitalization predict impaired respiratory function during follow-up of COVID-19 survivors. Endocrine. 2022;77(2):392–400.

Article  PubMed  Google Scholar 

Kottlors J, et al. Early extrapulmonary prognostic features in chest computed tomography in COVID-19 pneumonia: Bone mineral density is a relevant predictor for the clinical outcome - a multicenter feasibility study. Bone. 2021;144: 115790.

Article  PubMed  CAS  Google Scholar 

Tahtabasi M, et al. The prognostic value of vertebral bone density on chest CT in hospitalized COVID-19 patients. J Clin Densitom. 2021;24(4):506–15.

Article  PubMed  PubMed Central  Google Scholar 

Berktaş B, et al. COVID-19 illness and treatment decrease bone mineral density of surviving hospitalized patients. Eur Rev Med Pharmacol Sci. 2022;26(8):3046–56.

PubMed  Google Scholar 

Elmedany SH, et al. Bone mineral density changes in osteoporotic and osteopenic patients after COVID-19 infection. Egyptian Rheumatol Rehab. 2022;49(1):64.

Article  Google Scholar 

Al-Azzawi IS, Mohammed NS, Saad I, The impact of angiotensin converting enzyme-2 (ACE-2) on bone remodeling marker osteoprotegerin (OPG) in post-COVID-19 Iraqi patients. Cureus, 2022;14(10).

• Buccino F, et al. Osteoporosis and Covid-19: detected similarities in bone lacunar-level alterations via combined AI and advanced synchrotron testing. Materials & Design. 2023;231:112087. An interesting study determining alterations in serum bone turnover markers were present in hospitalized COVID-19 patients that did not require mechanical ventilation, indicating that even moderate disease could affect fracture risk.

Article  Google Scholar 

Obitsu S, et al. Potential enhancement of osteoclastogenesis by severe acute respiratory syndrome coronavirus 3a/X1 protein. Archives Virolog. 2009;154(9):1457–64.

Article  CAS  Google Scholar 

Queiroz-Junior CM, et al. The angiotensin converting enzyme 2/angiotensin-(1–7)/Mas receptor axis as a key player in alveolar bone remodeling. Bone. 2019;128:115041.

Article  PubMed  CAS  Google Scholar 

Duarte C, et al. Age-dependent effects of the recombinant spike protein/SARS-CoV-2 on the M-CSF– and IL-34-differentiated macrophages in vitro. Biochem Biophys Res Commun. 2021;546:97–102.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang Y, Zhang H, Zhang W. SARS-CoV-2 variants, immune escape, and countermeasures. Front Med. 2022;16(2):196–207.

Article  PubMed  PubMed Central  Google Scholar 

Muñoz-Fontela C, et al. Animal models for COVID-19. Nature. 2020;586(7830):509–15.

Article  PubMed  PubMed Central  Google Scholar 

Hassler L, et al. A novel soluble ACE2 protein provides lung and kidney protection in mice susceptible to lethal SARS-CoV-2 infection. Journal of the American Society of Nephrology, 2022;33(7).

Winkler ES, et al. SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nature Immunol. 2020;21(11):1327–35.

Article  CAS  Google Scholar 

Sun J, et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell. 2020;182(3):734-743.e5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chan JF-W, et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin Infect Dis. 2020;71(9):2428–46.

PubMed  CAS  Google Scholar 

Piplani S, et al. In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin. Scientific Rep. 2021;11(1):1–13.

Google Scholar 

•• Awosanya OD, et al. Osteoclast-mediated bone loss observed in a COVID-19 mouse model. Bone. 2022;154: 116227. This study was the first to show bone loss with SARS-CoV-2 in a preclinical model.

Article  PubMed  CAS  Google Scholar 

• Haudenschild AK, et al. Acute bone loss following SARS-CoV-2 infection in mice. J Orthopaed Res. 2023;41(9):1945–52. This study demonstrated bone loss and decreased growth plate in male and female mice with SARS-CoV-2 infection.

Article  CAS  Google Scholar 

•• Qiao W, et al. SARS-CoV-2 infection induces inflammatory bone loss in golden Syrian hamsters. Nat Commun. 2022;13(1):2539. This study showed a pro-inflammatory response and bone in a preclinical model that indicated the side effects were not due to direct infection.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gao J, et al. Neuropilin-1-mediated SARS-CoV-2 infection in bone marrow-derived macrophages inhibits osteoclast differentiation.

留言 (0)

沒有登入
gif