In Vivo Assessment of Bone Quality Without X-rays

Lester G. Bone quality: summary of NIH/ASBMR meeting. J Musculoskel Neuronal Interact. 2005;5:309.

CAS  Google Scholar 

Siris ES, Chen Y-T, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164:1108–12.

Article  PubMed  Google Scholar 

Shevroja E, Cafarelli FP, Guglielmi G, Hans D. DXA parameters, Trabecular Bone Score (TBS) and Bone Mineral Density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine. 2021;74:20–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29:518–30.

Article  PubMed  Google Scholar 

Whittier DE, Boyd SK, Burghardt AJ, Paccou J, Ghasem-Zadeh A, Chapurlat R, et al. Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporosis Int. 2020;31:1607–27.

Article  CAS  Google Scholar 

Mikolajewicz N, Bishop N, Burghardt AJ, Folkestad L, Hall A, Kozloff KM, et al. HR-pQCT measures of bone microarchitecture predict fracture: systematic review and meta-analysis. J Bone Miner Res. 2020;35:446–59.

Article  PubMed  Google Scholar 

Cappelle SI, Moreau M, Karmali R, Iconaru L, Baleanu F, Kinnard V, et al. Discriminating value of HR-pQCT for fractures in women with similar FRAX scores: a substudy of the FRISBEE cohort. Bone. 2021;143: 115613.

Article  CAS  PubMed  Google Scholar 

Unal M, Creecy A, Nyman JS. The role of matrix composition in the mechanical behavior of bone. Curr Osteoporos Rep. 2018;16:205–15.

Article  PubMed  PubMed Central  Google Scholar 

Burr DB. Changes in bone matrix properties with aging. Bone. 2019;120:85–93.

Article  CAS  PubMed  Google Scholar 

Burstein AH, Reilly DT, Martens M. Aging of bone tissue: mechanical properties. J Bone Joint Surg Am. 1976;58:82–6.

Article  CAS  PubMed  Google Scholar 

Zioupos P, Currey JD. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone. 1998;22:57–66.

Article  CAS  PubMed  Google Scholar 

Nyman JS, Roy A, Tyler JH, Acuna RL, Gayle HJ, Wang X. Age-related factors affecting the postyield energy dissipation of human cortical bone. J Orthopaed Res. 2007;25:646–55.

Article  Google Scholar 

Guglielmi G, Adams J, Link TM. Quantitative ultrasound in the assessment of skeletal status. Eur Radiol. 2009;19:1837–48.

Article  PubMed  Google Scholar 

Nicholson PHF, Strelitzki R, Cleveland RO, Bouxsein ML. Scattering of ultrasound in cancellous bone: predictions from a theoretical model. J Biomech. 2000;33:503–6.

Article  CAS  PubMed  Google Scholar 

Hans D, Wu C, Njeh CF, Zhao S, Augat P, Newitt D, et al. Ultrasound velocity of trabecular cubes reflects mainly bone density and elasticity. Calcif Tissue Int. 1999;64:18–23.

Article  CAS  PubMed  Google Scholar 

Minh HN, Du J, Raum K. Estimation of thickness and speed of sound in cortical bone using multifocus pulse-echo ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2020;67:568–79.

Article  Google Scholar 

Langton CM, Palmer SB, Porter RW. The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med. 1984;13:89–91.

Article  CAS  PubMed  Google Scholar 

Swinton PA, Elliott-Sale KJ, Sale C. Comparative analysis of bone outcomes between quantitative ultrasound and dual-energy x-ray absorptiometry from the UK Biobank cohort. Arch Osteoporos. 2023;18:77.

Article  PubMed  PubMed Central  Google Scholar 

McCloskey EV, Kanis JA, Odén A, Harvey NC, Bauer D, González-Macias J, et al. Predictive ability of heel quantitative ultrasound for incident fractures: an individual-level meta-analysis. Osteoporos Int. 2015;26:1979–87.

Article  CAS  PubMed  Google Scholar 

Fu Y, Li C, Luo W, Chen Z, Liu Z, Ding Y. Fragility fracture discriminative ability of radius quantitative ultrasound: a systematic review and meta-analysis. Osteoporos Int. 2021;32:23–38.

Article  CAS  PubMed  Google Scholar 

Imashuku Y, Takada M, Murata K. Comparisons of bone mass measurements on various skeletal sites including quantitative ultrasonography of the calcaneus for assessing age-related losses, their correlations, and diagnostic agreement using the Japanese and WHO criteria for osteoporosis. Radiat Med. 2007;25:148–54.

Article  PubMed  Google Scholar 

Métrailler A, Hans D, Lamy O, Rodriguez EG, Shevroja E. Heel quantitative ultrasound (QUS) predicts incident fractures independently of trabecular bone score (TBS), bone mineral density (BMD), and FRAX: the OsteoLaus Study. Osteoporos Int. 2023;34:1401–9. The study found that Heel-QUS could predict major osteoporotic fractures independently of FRAX, BMD, and the trabecular bone score. This underscores its potential as a pre-screening tool for osteoporosis management.

Strässle M, Grossmann J, Eppenberger P, Faas A, Jerkovic I, Floris J, et al. Short-termed changes in quantitative ultrasound estimated bone density among young men in an 18-weeks follow-up during their basic training for the Swiss Armed Forces. PeerJ. 2023;11: e15205.

Article  PubMed  PubMed Central  Google Scholar 

Sahota O, San P, Cawte SA, Pearson D, Hosking DJ. A Comparison of the longitudinal changes in quantitative ultrasound with dual-energy X-ray absorptiometry: the four-year effects of hormone replacement therapy. Osteoporos Int. 2000;11:52–8.

Article  CAS  PubMed  Google Scholar 

Gonnelli S, Cepollaro C, Montagnani A, Martini S, Gennari. L, Mangeri M, et al. Heel ultrasonography in monitoring alendronate therapy: a four-year longitudinal study. Osteoporos Int. 2002;13:415–21.

Hans D, Métrailler A, Rodriguez EG, Lamy O, Shevroja E. Bone quantitative ultrasound, new horizons. Adv Exp Med Biol. 2022;1364:7–34.

Article  PubMed  Google Scholar 

Moris M, Peretz A, Tjeka R, Negaban N, Wouters M, Bergmann P. Quantitative ultrasound bone measurements: normal values and comparison with bone mineral density by dual X-ray absorptiometry. Calcif Tissue Int. 1995;57:6–10.

Article  CAS  PubMed  Google Scholar 

Rosenthall L, Caminis J, Tenehouse A. Calcaneal Ultrasonometry: Response to Treatment in Comparison with Dual X-ray Absorptiometry Measurements of the Lumbar Spine and Femur. Calcif Tissue Int. 1999;64:200–4.

Article  CAS  PubMed  Google Scholar 

Töyräs J, Nieminen MT, Kröger H, Jurvelin JS. Bone mineral density, ultrasound velocity, and broadband attenuation predict mechanical properties of trabecular bone differently. Bone. 2002;31:503–7.

Article  PubMed  Google Scholar 

Hans D, Fuerst T, Uffmann M. Bone density and quality measurement using ultrasound. Curr Opin Rheumatol. 1996;8:370–5.

Article  CAS  PubMed  Google Scholar 

ABENDSCHEIN W, HYATT GW. 33 Ultrasonics and selected physical properties of bone. Clin Orthop Relat Res. 1970;69:294–301.

Rho JY, Ashman RB, Turner CH. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993;26:111–9.

Article  CAS  PubMed  Google Scholar 

Bouxsein ML, Radloff SE. Quantitative ultrasound of the calcaneus reflects the mechanical properties of calcaneal trabecular bone. J Bone Miner Res. 1997;12:839–46.

Article  CAS  PubMed  Google Scholar 

Bouxsein ML, Coan BS, Lee SC. Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone. 1999;25:49–54.

Article  CAS  PubMed  Google Scholar 

Peralta L, Redin JDM, Fan F, Cai X, Laugier P, Schneider J, et al. Bulk wave velocities in cortical bone reflect porosity and compression strength. Ultrasound Med Biol. 2021;47:799–808.

Article  PubMed  Google Scholar 

Hernandez CJ, van der Meulen MC. Understanding bone strength is not enough. J Bone Miner Res. 2017;32:1157–62.

Article  PubMed  Google Scholar 

Cook RB, Curwen C, Tasker T, Zioupos P. Fracture toughness and compressive properties of cancellous bone at the head of the femur and relationships to non-invasive skeletal assessment measurements. Méd Eng Phys. 2010;32:991–7.

Article  CAS  PubMed  Google Scholar 

Rufus-Membere P, Holloway-Kew KL, Diez-Perez A, Kotowicz MA, Pasco JA. Associations between bone material strength index, calcaneal quantitative ultrasound and bone mineral density in men. J Endocr Soc. 2020;5:bvaa179-.

Bridges D, Randall C, Hansma PK. A new device for performing reference point indentation without a reference probe. Rev Sci Instrum. 2012;83: 044301.

Article  PubMed  PubMed Central  Google Scholar 

Abraham AC, Agarwalla A, Yadavalli A, Liu JY, Tang SY. Microstructural and compositional contributions towards the mechanical behavior of aging human bone measured by cyclic and impact reference point indentation. Bone. 2016;87:37–43.

Article  PubMed  PubMed Central  Google Scholar 

Karbalaeisadegh Y, Yousefian O, Iori G, Raum K, Muller M. Acoustic diffusion constant of cortical bone: numerical simulation study of the effect of pore size and pore density on multiple scattering. J Acoust Soc Am. 2019;146:1015–23.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif