DNA replication and replication stress response in the context of nuclear architecture

Akdemir KC, Le VT, Chandran S et al (2020) Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat Genet 52:294–305. https://doi.org/10.1038/s41588-019-0564-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Akerman I, Kasaai B, Bazarova A et al (2020) A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat Commun 11:4826. https://doi.org/10.1038/s41467-020-18527-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aladjem MI, Redon CE (2017) Order from clutter: selective interactions at mammalian replication origins. Nat Rev Genet 18:101–116. https://doi.org/10.1038/nrg.2016.141

Article  CAS  PubMed  Google Scholar 

Andrs M, Stoy H, Boleslavska B et al (2023) Excessive reactive oxygen species induce transcription-dependent replication stress. Nat Commun 14:1791. https://doi.org/10.1038/s41467-023-37341-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arnould C, Rocher V, Saur F et al (2023) Chromatin compartmentalization regulates the response to DNA damage. Nature 623:183–192. https://doi.org/10.1038/s41586-023-06635-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai G, Kermi C, Stoy H et al (2020) HLTF promotes fork reversal, limiting replication stress resistance and preventing multiple mechanisms of unrestrained DNA synthesis. Mol Cell 78:1237-1251.e7. https://doi.org/10.1016/j.molcel.2020.04.031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balasubramanian S, Andreani M, Andrade JG et al (2022) Protection of nascent DNA at stalled replication forks is mediated by phosphorylation of RIF1 intrinsically disordered region. Elife 11:e75047. https://doi.org/10.7554/elife.75047

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banigan EJ, Tang W, van den Berg AA et al (2023) Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc National Acad Sci 120:e2210480120. https://doi.org/10.1073/pnas.2210480120

Article  CAS  Google Scholar 

Bao K, Zhang Q, Liu S et al (2022) LAP2α preserves genome integrity through assisting RPA deposition on damaged chromatin. Genome Biol 23:64. https://doi.org/10.1186/s13059-022-02638-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beck DB, Burton A, Oda H et al (2012) The role of PR-Set7 in replication licensing depends on Suv4-20h. Gene Dev 26:2580–2589. https://doi.org/10.1101/gad.195636.112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benedict B, van Schie JJM, Oostra AB et al (2020) WAPL-dependent repair of damaged DNA replication forks underlies oncogene-induced loss of sister chromatid cohesion. Dev Cell 52:683-698.e7. https://doi.org/10.1016/j.devcel.2020.01.024

Article  CAS  PubMed  Google Scholar 

Bermejo R, Capra T, Jossen R et al (2011) The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146:233–246. https://doi.org/10.1016/j.cell.2011.06.033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berti M, Chaudhuri AR, Thangavel S et al (2013) Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol 20:347–354. https://doi.org/10.1038/nsmb.2501

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berti M, Cortez D, Lopes M (2020) The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat Rev Mol Cell Bio 21:633–651. https://doi.org/10.1038/s41580-020-0257-5

Article  CAS  Google Scholar 

Besnard E, Babled A, Lapasset L et al (2012) Unraveling cell type–specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 19:837–844. https://doi.org/10.1038/nsmb.2339

Article  CAS  PubMed  Google Scholar 

Bétous R, Mason AC, Rambo RP et al (2012) SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Gene Dev 26:151–162. https://doi.org/10.1101/gad.178459.111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blasiak J, Szczepańska J, Sobczuk A et al (2021) RIF1 links replication timing with fork reactivation and DNA double-strand break repair. Int J Mol Sci 22:11440. https://doi.org/10.3390/ijms222111440

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buonomo SBC, Wu Y, Ferguson D, de Lange T (2009) Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J Cell Biol 187:385–398. https://doi.org/10.1083/jcb.200902039

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burgers PMJ, Kunkel TA (2016) Eukaryotic DNA replication fork. Annu Rev Biochem 86:1–22. https://doi.org/10.1146/annurev-biochem-061516-044709

Article  CAS  Google Scholar 

Capella M, Mandemaker IK, Caballero LM et al (2021) Nucleolar release of rDNA repeats for repair involves SUMO-mediated untethering by the Cdc48/p97 segregase. Nat Commun 12:4918. https://doi.org/10.1038/s41467-021-25205-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caridi CP, D’Agostino C, Ryu T et al (2018) Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559:54–60. https://doi.org/10.1038/s41586-018-0242-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Caridi CP, Plessner M, Grosse R, Chiolo I (2019) Nuclear actin filaments in DNA repair dynamics. Nat Cell Biol 21:1068–1077. https://doi.org/10.1038/s41556-019-0379-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carvajal-Maldonado D, Byrum AK, Jackson J et al (2019) Perturbing cohesin dynamics drives MRE11 nuclease-dependent replication fork slowing. Nucleic Acids Res 47:1294–1310. https://doi.org/10.1093/nar/gky519

Article  CAS  PubMed  Google Scholar 

Cayrou C, Coulombe P, Vigneron A et al (2011) Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res 21:1438–1449. https://doi.org/10.1101/gr.121830.111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cayrou C, Ballester B, Peiffer I et al (2015) The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Res 25:1873–1885. https://doi.org/10.1101/gr.192799.115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaudhuri AR, Hashimoto Y, Herrador R et al (2012) Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol 19:417–423. https://doi.org/10.1038/nsmb.2258

Article  CAS  Google Scholar 

Chiolo I, Minoda A, Colmenares SU et al (2011) Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144:732–744. https://doi.org/10.1016/j.cell.2011.02.012

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho NW, Dilley RL, Lampson MA, Greenberg RA (2014) Interchromosomal Homology Searches Drive Directional ALT Telomere Movement and Synapsis. Cell 159:108–121. https://doi.org/10.1016/j.cell.2014.08.030

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chung DKC, Chan JNY, Strecker J et al (2015) Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat Commun 6:7742. https://doi.org/10.1038/ncomms8742

Article  CAS  PubMed  Google Scholar 

Cong K, Cantor SB (2022) Exploiting replication gaps for cancer therapy. Mol Cell 82:2363–2369. https://doi.org/10.1016/j.molcel.2022.04.023

Article  CAS  PubMed  PubMed Central  Google Scholar 

Connolly C, Takahashi S, Miura H et al (2022) SAF-A promotes origin licensing and replication fork progression to ensure robust DNA replication. J Cell Sci 135:. https://doi.org/10.1242/jcs.258991

Costa A, Diffley JFX (2022) The Initiation of Eukaryotic DNA Replication. Annu Rev Biochem 91:. https://doi.org/10.1146/annurev-biochem-072321-110228

Costa AABA da, Chowdhury D, Shapiro GI et al (2022) Targeting replication stress in cancer therapy. Nat Rev Drug Discov 1–21. https://doi.org/10.1038/s41573-022-00558-5

Das SP, Borrman T, Liu VWT et al (2015) Replication timing is regulated by the number of MCMs loaded at origins. Genome Res 25:1886–1892. https://doi.org/10.1101/gr.195305.115

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davidson IF, Peters J-M (2021) Genome folding through loo

留言 (0)

沒有登入
gif