Akdemir KC, Le VT, Chandran S et al (2020) Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat Genet 52:294–305. https://doi.org/10.1038/s41588-019-0564-y
Article CAS PubMed PubMed Central Google Scholar
Akerman I, Kasaai B, Bazarova A et al (2020) A predictable conserved DNA base composition signature defines human core DNA replication origins. Nat Commun 11:4826. https://doi.org/10.1038/s41467-020-18527-0
Article CAS PubMed PubMed Central Google Scholar
Aladjem MI, Redon CE (2017) Order from clutter: selective interactions at mammalian replication origins. Nat Rev Genet 18:101–116. https://doi.org/10.1038/nrg.2016.141
Article CAS PubMed Google Scholar
Andrs M, Stoy H, Boleslavska B et al (2023) Excessive reactive oxygen species induce transcription-dependent replication stress. Nat Commun 14:1791. https://doi.org/10.1038/s41467-023-37341-y
Article CAS PubMed PubMed Central Google Scholar
Arnould C, Rocher V, Saur F et al (2023) Chromatin compartmentalization regulates the response to DNA damage. Nature 623:183–192. https://doi.org/10.1038/s41586-023-06635-y
Article CAS PubMed PubMed Central Google Scholar
Bai G, Kermi C, Stoy H et al (2020) HLTF promotes fork reversal, limiting replication stress resistance and preventing multiple mechanisms of unrestrained DNA synthesis. Mol Cell 78:1237-1251.e7. https://doi.org/10.1016/j.molcel.2020.04.031
Article CAS PubMed PubMed Central Google Scholar
Balasubramanian S, Andreani M, Andrade JG et al (2022) Protection of nascent DNA at stalled replication forks is mediated by phosphorylation of RIF1 intrinsically disordered region. Elife 11:e75047. https://doi.org/10.7554/elife.75047
Article CAS PubMed PubMed Central Google Scholar
Banigan EJ, Tang W, van den Berg AA et al (2023) Transcription shapes 3D chromatin organization by interacting with loop extrusion. Proc National Acad Sci 120:e2210480120. https://doi.org/10.1073/pnas.2210480120
Bao K, Zhang Q, Liu S et al (2022) LAP2α preserves genome integrity through assisting RPA deposition on damaged chromatin. Genome Biol 23:64. https://doi.org/10.1186/s13059-022-02638-6
Article CAS PubMed PubMed Central Google Scholar
Beck DB, Burton A, Oda H et al (2012) The role of PR-Set7 in replication licensing depends on Suv4-20h. Gene Dev 26:2580–2589. https://doi.org/10.1101/gad.195636.112
Article CAS PubMed PubMed Central Google Scholar
Benedict B, van Schie JJM, Oostra AB et al (2020) WAPL-dependent repair of damaged DNA replication forks underlies oncogene-induced loss of sister chromatid cohesion. Dev Cell 52:683-698.e7. https://doi.org/10.1016/j.devcel.2020.01.024
Article CAS PubMed Google Scholar
Bermejo R, Capra T, Jossen R et al (2011) The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell 146:233–246. https://doi.org/10.1016/j.cell.2011.06.033
Article CAS PubMed PubMed Central Google Scholar
Berti M, Chaudhuri AR, Thangavel S et al (2013) Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol 20:347–354. https://doi.org/10.1038/nsmb.2501
Article CAS PubMed PubMed Central Google Scholar
Berti M, Cortez D, Lopes M (2020) The plasticity of DNA replication forks in response to clinically relevant genotoxic stress. Nat Rev Mol Cell Bio 21:633–651. https://doi.org/10.1038/s41580-020-0257-5
Besnard E, Babled A, Lapasset L et al (2012) Unraveling cell type–specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 19:837–844. https://doi.org/10.1038/nsmb.2339
Article CAS PubMed Google Scholar
Bétous R, Mason AC, Rambo RP et al (2012) SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Gene Dev 26:151–162. https://doi.org/10.1101/gad.178459.111
Article CAS PubMed PubMed Central Google Scholar
Blasiak J, Szczepańska J, Sobczuk A et al (2021) RIF1 links replication timing with fork reactivation and DNA double-strand break repair. Int J Mol Sci 22:11440. https://doi.org/10.3390/ijms222111440
Article CAS PubMed PubMed Central Google Scholar
Buonomo SBC, Wu Y, Ferguson D, de Lange T (2009) Mammalian Rif1 contributes to replication stress survival and homology-directed repair. J Cell Biol 187:385–398. https://doi.org/10.1083/jcb.200902039
Article CAS PubMed PubMed Central Google Scholar
Burgers PMJ, Kunkel TA (2016) Eukaryotic DNA replication fork. Annu Rev Biochem 86:1–22. https://doi.org/10.1146/annurev-biochem-061516-044709
Capella M, Mandemaker IK, Caballero LM et al (2021) Nucleolar release of rDNA repeats for repair involves SUMO-mediated untethering by the Cdc48/p97 segregase. Nat Commun 12:4918. https://doi.org/10.1038/s41467-021-25205-2
Article CAS PubMed PubMed Central Google Scholar
Caridi CP, D’Agostino C, Ryu T et al (2018) Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559:54–60. https://doi.org/10.1038/s41586-018-0242-8
Article CAS PubMed PubMed Central Google Scholar
Caridi CP, Plessner M, Grosse R, Chiolo I (2019) Nuclear actin filaments in DNA repair dynamics. Nat Cell Biol 21:1068–1077. https://doi.org/10.1038/s41556-019-0379-1
Article CAS PubMed PubMed Central Google Scholar
Carvajal-Maldonado D, Byrum AK, Jackson J et al (2019) Perturbing cohesin dynamics drives MRE11 nuclease-dependent replication fork slowing. Nucleic Acids Res 47:1294–1310. https://doi.org/10.1093/nar/gky519
Article CAS PubMed Google Scholar
Cayrou C, Coulombe P, Vigneron A et al (2011) Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res 21:1438–1449. https://doi.org/10.1101/gr.121830.111
Article CAS PubMed PubMed Central Google Scholar
Cayrou C, Ballester B, Peiffer I et al (2015) The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Res 25:1873–1885. https://doi.org/10.1101/gr.192799.115
Article CAS PubMed PubMed Central Google Scholar
Chaudhuri AR, Hashimoto Y, Herrador R et al (2012) Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol 19:417–423. https://doi.org/10.1038/nsmb.2258
Chiolo I, Minoda A, Colmenares SU et al (2011) Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144:732–744. https://doi.org/10.1016/j.cell.2011.02.012
Article CAS PubMed PubMed Central Google Scholar
Cho NW, Dilley RL, Lampson MA, Greenberg RA (2014) Interchromosomal Homology Searches Drive Directional ALT Telomere Movement and Synapsis. Cell 159:108–121. https://doi.org/10.1016/j.cell.2014.08.030
Article CAS PubMed PubMed Central Google Scholar
Chung DKC, Chan JNY, Strecker J et al (2015) Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat Commun 6:7742. https://doi.org/10.1038/ncomms8742
Article CAS PubMed Google Scholar
Cong K, Cantor SB (2022) Exploiting replication gaps for cancer therapy. Mol Cell 82:2363–2369. https://doi.org/10.1016/j.molcel.2022.04.023
Article CAS PubMed PubMed Central Google Scholar
Connolly C, Takahashi S, Miura H et al (2022) SAF-A promotes origin licensing and replication fork progression to ensure robust DNA replication. J Cell Sci 135:. https://doi.org/10.1242/jcs.258991
Costa A, Diffley JFX (2022) The Initiation of Eukaryotic DNA Replication. Annu Rev Biochem 91:. https://doi.org/10.1146/annurev-biochem-072321-110228
Costa AABA da, Chowdhury D, Shapiro GI et al (2022) Targeting replication stress in cancer therapy. Nat Rev Drug Discov 1–21. https://doi.org/10.1038/s41573-022-00558-5
Das SP, Borrman T, Liu VWT et al (2015) Replication timing is regulated by the number of MCMs loaded at origins. Genome Res 25:1886–1892. https://doi.org/10.1101/gr.195305.115
Article CAS PubMed PubMed Central Google Scholar
Davidson IF, Peters J-M (2021) Genome folding through loo
留言 (0)