(m) RVD-hemopressin (α) Ameliorated Oxidative Stress, Apoptosis and Damage to the BDNF/TrkB/Akt Pathway Induced by Scopolamine in HT22 Cells

Baek SY, Li FY, Kim DH, Kim SJ, Kim MR (2020) Enteromorpha prolifera extract improves memory in scopolamine-treated mice via downregulating amyloid-beta expression and upregulating BDNF/TrkB pathway. Antioxidants (Basel) 9(7). https://doi.org/10.3390/antiox9070620

Bai R, Guo J, Ye XY, Xie Y, Xie T (2022) Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res Rev 77:101619. https://doi.org/10.1016/j.arr.2022.101619

Article  PubMed  Google Scholar 

Chen ZR, Huang JB, Yang SL, Hong FF (2022) Role of cholinergic signaling in Alzheimer's disease. Molecules 27(6). https://doi.org/10.3390/molecules27061816

Crunfli F, Vrechi T, Costa A, Torrão A (2019) Cannabinoid receptor type 1 agonist ACEA improves cognitive deficit on STZ-induced neurotoxicity through apoptosis pathway and NO modulation. Neurotox Res 35(3):516–529. https://doi.org/10.1007/s12640-018-9991-2

Article  PubMed  Google Scholar 

Du M, Wu C, Yu R, Cheng Y, Tang Z, Wu B, Fu J, Tan W, Zhou Q, Zhu Z, Balawi E, Huang X, Ma J, Liao Z (2022) A novel circular RNA, circIgfbp2, links neural plasticity and anxiety through targeting mitochondrial dysfunction and oxidative stress-induced synapse dysfunction after traumatic brain injury. Mol Psychiatry. https://doi.org/10.1038/s41380-022-01711-7

Article  PubMed  PubMed Central  Google Scholar 

Du X, Wang X, Geng M (2018) Alzheimer’s disease hypothesis and related therapies. Translational Neurodegeneration 7:2. https://doi.org/10.1186/s40035-018-0107-y

Article  PubMed  PubMed Central  Google Scholar 

Gomes I, Grushko JS, Golebiewska U, Hoogendoorn S, Gupta A, Heimann AS, Ferro ES, Scarlata S, Fricker LD, Devi LA (2009) Novel endogenous peptide agonists of cannabinoid receptors. FASEB J Official Publ Fed Am Soc Exp Biol 23(9):3020–3029. https://doi.org/10.1096/fj.09-132142

Article  Google Scholar 

Hampel H, Mesulam M, Cuello A, Farlow M, Giacobini E, Grossberg G, Khachaturian A, Vergallo A, Cavedo E, Snyder P, Khachaturian Z (2018) The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain J Neurol 141(7):1917–1933. https://doi.org/10.1093/brain/awy132

Article  Google Scholar 

Heimann A, Dale C, Guimarães F, Reis R, Navon A, Shmuelov M, Rioli V, Gomes I, Devi L, Ferro E (2021) Hemopressin as a breakthrough for the cannabinoid field. Neuropharmacology 183:108406. https://doi.org/10.1016/j.neuropharm.2020.108406

Article  PubMed  Google Scholar 

Heimann AS, Gomes I, Dale CS, Pagano RL, Gupta A, de Souza LL, Luchessi AD, Castro LM, Giorgi R, Rioli V, Ferro ES, Devi LA (2007) Hemopressin is an inverse agonist of CB1 cannabinoid receptors. Proc Natl Acad Sci USA 104(51):20588–20593. https://doi.org/10.1073/pnas.0706980105

Article  PubMed  PubMed Central  Google Scholar 

Kim HJ, Baek SY, Sok DE, Lee KJ, Kim YJ, Kim MR (2020) Neuroprotective activity of polyphenol-rich ribes diacanthum pall against oxidative stress in glutamate-stimulated HT-22 cells and a scopolamine-induced amnesia animal model. Antioxidants (Basel) 9(9). https://doi.org/10.3390/antiox9090895

Kim T, Syty M, Wu K, Ge S (2022) Adult hippocampal neurogenesis and its impairment in Alzheimer’s disease. Zool Res 43(3):481–496. https://doi.org/10.24272/j.issn.2095-8137.2021.479

Article  PubMed  PubMed Central  Google Scholar 

Kumari E, Li K, Yang Z, Zhang T (2020) Tacrine accelerates spatial long-term memory via improving impaired neural oscillations and modulating GAD isomers including neuro-receptors in the hippocampus of APP/PS1 AD mice. Brain Res Bull 161:166–176. https://doi.org/10.1016/j.brainresbull.2020.05.007

Article  PubMed  Google Scholar 

Leone S, Recinella L, Chiavaroli A, Martinotti S, Ferrante C, Mollica A, Macedonio G, Stefanucci A, Dvorácskó S, Tömböly C, De Petrocellis L, Vacca M, Brunetti L, Orlando G (2017) Emotional disorders induced by Hemopressin and RVD-hemopressin(α) administration in rats. Pharmacol Rep: PR 69(6):1247–1253. https://doi.org/10.1016/j.pharep.2017.06.010

Article  PubMed  Google Scholar 

Lipton S (2022) Hidden networks of aberrant protein transnitrosylation contribute to synapse loss in Alzheimer’s disease. Free Radical Biol Med 193:171–176. https://doi.org/10.1016/j.freeradbiomed.2022.10.272

Article  Google Scholar 

Llorente-Ovejero A, Bengoetxea de Tena I, Martinez-Gardeazabal J, Moreno-Rodriguez M, Lombardero L, Manuel I, Rodriguez-Puertas R (2022) Cannabinoid receptors and glial response following a basal forebrain cholinergic lesion. ACS Pharmacol Transl Sci 5(9):791–802. https://doi.org/10.1021/acsptsci.2c00069

Article  PubMed  PubMed Central  Google Scholar 

Mahdi O, Chiroma S, Hidayat Baharuldin M, Mohd Nor N, Mat Taib C, Jagadeesan S, Devi S, Mohd Moklas M (2021) WIN55,212–2 attenuates cognitive impairments in AlCl + d-galactose-induced Alzheimer's disease rats by enhancing neurogenesis and reversing oxidative stress. Biomedicines 9(9). https://doi.org/10.3390/biomedicines9091270

Mammana S, Cavalli E, Gugliandolo A, Silvestro S, Pollastro F, Bramanti P, Mazzon E (2019) Could the combination of two non-psychotropic cannabinoids counteract neuroinflammation? Effectiveness of cannabidiol associated with cannabigerol. Medicina (Kaunas) 55(11). https://doi.org/10.3390/medicina55110747

Mi YJ, Chen H, Guo N, Sun MY, Zhao ZH, Gao XC, Wang XL, Zhang RS, Zhou JB, Gou XC (2017) Inhibition of PirB Activity by TAT-PEP improves mouse motor ability and cognitive behavior. Fronti Aging Neurosci 9:199. https://doi.org/10.3389/fnagi.2017.00199

Article  Google Scholar 

Mizuno M, Yamada K, Takei N, Tran MH, He J, Nakajima A, Nawa H, Nabeshima T (2003) Phosphatidylinositol 3-kinase: a molecule mediating BDNF-dependent spatial memory formation. Mol Psychiatry 8(2):217–224. https://doi.org/10.1038/sj.mp.4001215

Article  PubMed  Google Scholar 

Peng L, Bestard-Lorigados I, Song W (2022) The synapse as a treatment avenue for Alzheimer’s Disease. Mol Psychiatry. https://doi.org/10.1038/s41380-022-01565-z

Article  PubMed  PubMed Central  Google Scholar 

Recinella L, Chiavaroli A, Ferrante C, Mollica A, Macedonio G, Stefanucci A, Dimmito M, Dvorácskó S, Tömböly C, Brunetti L, Orlando G, Leone S (2018) Effects of central RVD-hemopressin(α) administration on anxiety, feeding behavior and hypothalamic neuromodulators in the rat. Pharmacol Rep: PR 70(4):650–657. https://doi.org/10.1016/j.pharep.2018.01.010

Article  PubMed  Google Scholar 

Ruver-Martins A, Bicca M, de Araujo F, de Noronha Sales Maia B, Pamplona F, da Silva E, Nascimento F (2022) Cannabinoid extract in microdoses ameliorates mnemonic and nonmnemonic Alzheimer’s disease symptoms: a case report. J Med Case Reports 16(1):277. https://doi.org/10.1186/s13256-022-03457-w

Article  Google Scholar 

Saeedi M, Mehranfar F (2022) Challenges and approaches of drugs such as memantine, donepezil, rivastigmine, and aducanumab in the treatment, control and management of Alzheimer’s disease. Recent Pat Biotechnol 16(2):102–121. https://doi.org/10.2174/1872208316666220302115901

Article  PubMed  Google Scholar 

Scheuer T, Endesfelder S, Auf dem Brinke E, Bührer C, Schmitz T (2022) Neonatal oxidative stress impairs cortical synapse formation and GABA homeostasis in parvalbumin-expressing interneurons. Oxid Med Cell Longev 2022:8469756. https://doi.org/10.1155/2022/8469756

Article  PubMed  PubMed Central  Google Scholar 

Shao Z, Dou S, Zhu J, Wang H, Xu D, Wang C, Cheng B, Bai B (2021) Apelin-36 protects HT22 cells against oxygen-glucose deprivation/reperfusion-induced oxidative stress and mitochondrial dysfunction by promoting SIRT1-Mediated PINK1/parkin-dependent mitophagy. Neurotox Res 39(3):740–753. https://doi.org/10.1007/s12640-021-00338-w

Article  PubMed  Google Scholar 

Singh SP, Gupta D (2017) Discovery of potential inhibitor against human acetylcholinesterase: a molecular docking and molecular dynamics investigation. Comput Biol Chem 68:224–230. https://doi.org/10.1016/j.compbiolchem.2017.04.002

Article  PubMed  Google Scholar 

Syed Z, Shal B, Azhar A, Amanat S, Khan A, Ali H, Kil YS, Seo EK, Khan S (2022) Pharmacological mechanism of xanthoangelol underlying Nrf-2/TRPV1 and anti-apoptotic pathway against scopolamine-induced amnesia in mice. Biomed Pharmacother 150:113073. https://doi.org/10.1016/j.biopha.2022.113073

Article  PubMed  Google Scholar 

Tabrizian K, Amelinia F, Belaran M, Pourheidar S, Mirzaei H, Fanoudi S (2021) Tadalafil reversed H-89 - and scopolamine - induced spatial learning impairments in male rats. Drug Res. https://doi.org/10.1055/a-1345-7832

Article  Google Scholar 

Tadijan A, Vlašić I, Vlainić J, Đikić D, Oršolić N, Jazvinšćak Jembrek M (2022) Intracellular molecular targets and signaling pathways involved in antioxidative and neuroprotective effects of cannabinoids in neurodegenerative conditions. Antioxidants (Basel, Switzerland) 11(10). https://doi.org/10.3390/antiox11102049

Talarico G, Trebbastoni A, Bruno G, de Lena C (2019) Modulation of the cannabinoid system: a new perspective for the treatment of the Alzheimer’s disease. Curr Neuropharmacol 17(2):176–183. https://doi.org/10.2174/1570159X16666180702144644

Article  PubMed  Google Scholar 

Thompson KJ, Tobin AB (2020) Crosstalk between the M1 muscarinic acetylcholine receptor and the endocannabinoid system: A relevance for Alzheimer’s disease? Cell Signal 70:109545. https://doi.org/10.1016/j.cellsig.2020.109545

Article  PubMed  PubMed Central  Google Scholar 

Wan T, Wang Z, Luo Y, Zhang Y, He W, Mei Y, Xue J, Li M, Pan H, Li W, Wang Q, Huang Y (2019) FA-97, a new synthetic caffeic acid phenethyl ester derivative, protects against oxidative stress-mediated neuronal cell apoptosis and scopolamine-induced cognitive impairment by activating Nrf2/HO-1 signaling. Oxid Med Cell Longev 2019:8239642. https://doi.org/10.1155/2019/8239642

Article  PubMed  PubMed Central  Google Scholar 

Wang M, Liu T, Chen S, Wu M, Han J, Li Z (2021) Design and synthesis of 3-(4-pyridyl)-5-(4-sulfamido-phenyl)-1,2,4-oxadiazole derivatives as novel GSK-3beta inhibitors and evaluation of their potential as multifunctional anti-Alzheimer agents. Eur J Med Chem 209:112874. https://doi.org/10.1016/j.ejmech.2020.112874

Article  PubMed  Google Scholar 

Wei Z, Wei M, Yang X, Xu Y, Gao S, Ren K (2022) Synaptic secretion and beyond: Targeting synapse and neurotransmitters to treat neurodegenerative diseases. Oxid Med Cell Longev 2022:9176923. https://doi.org/10.1155/2022/9176923

Article  PubMed  PubMed Central  Google Scholar 

Wu D, Sun N, Ding J, Zhu B, Lin S (2019) Evaluation and structure-activity relationship analysis of antioxidant shrimp peptides. Food Funct 10(9):5605–5615. https://doi.org/10.1039/c9fo01280j

Article  PubMed  Google Scholar 

Xapelli S, Agasse F, Grade S, Bernardino L, Ribeiro F, Schitine C, Heimann A, Ferro E, Sebastião A, De Melo RR, Malva J (2014) Modulation of subventricular zone oligodendrogenesis: a role for hemopressin? Front Cell Neurosci 8:59. https://doi.org/10.3389/fncel.2014.00059

Article  PubMed  PubMed Central  Google Scholar 

Xiong Y, Lim C (2021) Understanding the modulatory effects of cannabidiol on Alzheimer's disease. Brain Sci 11(9). https://doi.org/10.3390/brainsci11091211

Yamada K, Nabeshima T (2003) Brain-derived neurotrophic factor/TrkB signaling in memory processes. J Pharmacol Sci 91(4):267–270. https://doi.org/10.1254/jphs.91.267

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif