Hyperoxia and brain: the link between necessity and injury from a molecular perspective

Andresen JH, Saugstad OD (2020) Oxygen metabolism and oxygenation of the newborn. Semin Fetal Neonatal Med 25:101078. https://doi.org/10.1016/j.siny.2020.101078

Article  PubMed  Google Scholar 

Bailey DM (2019a) Oxygen, evolution and redox signalling in the human brain; quantum in the quotidian. J Physiol 597:15–28. https://doi.org/10.1113/JP276814

Article  CAS  PubMed  Google Scholar 

Bailey DM (2019b) Oxygen is rocket fuel for the human brain; a radical perspective! J Physiol 597:659–660. https://doi.org/10.1113/JP277475

Article  CAS  PubMed  Google Scholar 

Barichello T, Lemos JC, Generoso JS et al (2011) Oxidative stress, Cytokine/Chemokine and disruption of blood–brain barrier in neonate rats after Meningitis by Streptococcus agalactiae. Neurochem Res 36:1922–1930. https://doi.org/10.1007/s11064-011-0514-2

Article  CAS  PubMed  Google Scholar 

Beasley R, Chien J, Douglas J et al (2015) Thoracic society of Australia and New Zealand oxygen guidelines for acute oxygen use in adults: swimming between the flags. Respirology 20:1182–1191. https://doi.org/10.1111/resp.12620

Article  PubMed  PubMed Central  Google Scholar 

Bonfante S, Della Giustina A, Danielski LG et al (2020) Stanniocalcin-1 ameliorates cerebral ischemia by decrease oxidative stress and blood brain barrier permeability. Microvasc Res 128:103956. https://doi.org/10.1016/j.mvr.2019.103956

Article  CAS  PubMed  Google Scholar 

Brugniaux JV, Coombs GB, Barak OF et al (2018) Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Integr Comp Physiol 315:R1–R27. https://doi.org/10.1152/ajpregu.00165.2017

Article  CAS  Google Scholar 

Burtscher J, Mallet RT, Pialoux V et al (2022) Adaptive responses to Hypoxia and/or Hyperoxia in humans. Antioxid Redox Signal 37:887–912. https://doi.org/10.1089/ars.2021.0280

Article  CAS  PubMed  Google Scholar 

Cancelier AC, Petronilho F, Reinke A et al (2009) Inflammatory and oxidative parameters in cord blood as diagnostic of early-onset neonatal sepsis: a case-control study. Pediatr Crit Care Med 10:467–471. https://doi.org/10.1097/PCC.0b013e318198b0e3

Article  PubMed  Google Scholar 

Carvalho D, Petronilho F, Vuolo F et al (2008) The nociceptin/orphanin FQ-NOP receptor antagonist effects on an animal model of sepsis. Intensive Care Med 34:2284–2290. https://doi.org/10.1007/s00134-008-1313-3

Article  CAS  PubMed  Google Scholar 

Cenini G, Lloret A, Cascella R (2019) Oxidative stress in neurodegenerative diseases: from a mitochondrial point of View. Oxid Med Cell Longev 2019:1–18. https://doi.org/10.1155/2019/2105607

Article  CAS  Google Scholar 

Cheung HM, Yew DTW (2020) Neuroprotective mechanisms of Ginkgo biloba against oxidative stress. Oxidative stress and Dietary antioxidants in Neurological diseases. Elsevier, pp 271–290

Chu DK, Kim LHY, Young PJ et al (2018) Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet 391:1693–1705. https://doi.org/10.1016/S0140-6736(18)30479-3

Article  PubMed  Google Scholar 

Dal-Pizzol F, Ritter C, Cassol-Jr OJ et al (2010) Oxidative mechanisms of Brain Dysfunction during Sepsis. Neurochem Res 35:1–12. https://doi.org/10.1007/s11064-009-0043-4

Article  CAS  PubMed  Google Scholar 

Damiani E, Donati A, Girardis M (2018) Oxygen in the critically ill. Curr Opin Anaesthesiol 31:129–135. https://doi.org/10.1097/ACO.0000000000000559

Article  CAS  PubMed  Google Scholar 

Davies KJA (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31. https://doi.org/10.1042/bss0610001

Article  CAS  PubMed  Google Scholar 

DeFreitas MJ, Katsoufis CP, Benny M et al (2022) Educational Review: the impact of perinatal oxidative stress on the developing kidney. Front Pediatr 10. https://doi.org/10.3389/fped.2022.853722

Di Meo S, Venditti P (2020) Evolution of the knowledge of free radicals and other oxidants. Oxid Med Cell Longev 2020:1–32. https://doi.org/10.1155/2020/9829176

Article  CAS  Google Scholar 

Echevarria C, Steer J, Wason J, Bourke S (2021) Oxygen therapy and inpatient mortality in COPD exacerbation. Emerg Med J 38:170–177. https://doi.org/10.1136/emermed-2019-209257

Article  PubMed  Google Scholar 

Endesfelder S, Weichelt U, Strauß E et al (2017) Neuroprotection by Caffeine in Hyperoxia-Induced neonatal brain Injury. Int J Mol Sci 18:187. https://doi.org/10.3390/ijms18010187

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fedorova M, Bollineni RC, Hoffmann R (2014) Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev 33:79–97. https://doi.org/10.1002/mas.21381

Article  CAS  PubMed  Google Scholar 

Gibbons TD, Dempsey JA, Thomas KN et al (2022) Contribution of the carotid body to thermally mediated hyperventilation in humans. J Physiol 600:3603–3624. https://doi.org/10.1113/JP282918

Article  CAS  PubMed  Google Scholar 

Giridharan VV, Masud F, Petronilho F et al (2019) Infection-Induced systemic inflammation is a potential driver of Alzheimer’s Disease Progression. Front Aging Neurosci 11. https://doi.org/10.3389/fnagi.2019.00122

Giustina A, Della, Bonfante S, Zarbato GF et al (2018) Dimethyl Fumarate modulates oxidative stress and inflammation in organs after Sepsis in rats. Inflammation 41:315–327. https://doi.org/10.1007/s10753-017-0689-z

Article  CAS  PubMed  Google Scholar 

Grieco DL, Maggiore SM, Roca O et al (2021) Non-invasive ventilatory support and high-flow nasal oxygen as first-line treatment of acute hypoxemic respiratory failure and ARDS. Intensive Care Med 47:851–866. https://doi.org/10.1007/s00134-021-06459-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hadanny A, Efrati S (2020) The Hyperoxic-Hypoxic Paradox. Biomolecules 10:958. https://doi.org/10.3390/biom10060958

Article  CAS  PubMed  PubMed Central  Google Scholar 

Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press

Halliwell B, Gutteridge JMC (2015) Free radicals in Biology and Medicine, 5th edn. Oxford University Press, Oxford, UK

Book  Google Scholar 

Hals I, Ohki T, Singh R et al (2017) Hyperoxia reduces insulin release and induces mitochondrial dysfunction with possible implications for hyperoxic treatment of neonates. Physiol Rep 5:e13447. https://doi.org/10.14814/phy2.13447

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haynes RL, Folkerth RD, Keefe RJ et al (2003) Nitrosative and oxidative Injury to Premyelinating oligodendrocytes in Periventricular Leukomalacia. J Neuropathol Exp Neurol 62:441–450. https://doi.org/10.1093/jnen/62.5.441

Article  PubMed  Google Scholar 

Hegeduš I, Milić J, Ćosić A et al (2017) Cerebrovascular reactivity in acute hyperoxia in patients with acute ischaemic stroke. Brain Inj 31:560–566. https://doi.org/10.1080/02699052.2017.1280853

Article  PubMed  Google Scholar 

Herrera-Campos AB, Zamudio-Martinez E, Delgado-Bellido D et al (2022) Implications of Hyperoxia over the Tumor Microenvironment: an overview highlighting the importance of the Immune System. Cancers (Basel) 14:2740. https://doi.org/10.3390/cancers14112740

Article  CAS  PubMed  Google Scholar 

Hess HW, Hostler D, Clemency BM et al (2021) Carotid body chemosensitivity is not attenuated during cold water diving. Am J Physiol Integr Comp Physiol 321:R197–R207. https://doi.org/10.1152/ajpregu.00202.2020

Article  CAS  Google Scholar 

Hu T, Wang J, Wang S et al (2019) Effects of the duration of postresuscitation hyperoxic ventilation on neurological outcome and survival in an asphyxial cardiac arrest rat model. Sci Rep 9:16500. https://doi.org/10.1038/s41598-019-52477-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iturriaga R, Alcayaga J, Chapleau MW, Somers VK (2021) Carotid body chemoreceptors: physiology, pathology, and implications for health and disease. Physiol Rev 101:1177–1235. https://doi.org/10.1152/physrev.00039.2019

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kang L, Dong W, Ruan Y et al (2019) The molecular mechanism of Sirt1 Signaling Pathway in Brain Injury of Newborn rats exposed to Hyperoxia. Biol Pharm Bull 42:1854–1860. https://doi.org/10.1248/bpb.b19-00382

Article  CAS  PubMed  Google Scholar 

Kapadia V, Wyckoff MH (2018) Oxygen therapy in the delivery room. Clin Perinatol 45:293–306. https://doi.org/10.1016/j.clp.2018.01.014

Article  PubMed  Google Scholar 

Körpınar Ş, Uzun H (2019) The effects of hyperbaric oxygen at different pressures on oxidative stress and antioxidant status in rats. Med (B Aires) 55:205. https://doi.org/10.3390/medicina55050205

Article  Google Scholar 

Kwak DJ, Kwak SD, Gauda EB (2006) The Effect of Hyperoxia on reactive oxygen species (ROS) in rat petrosal ganglion neurons during Development using Organotypic slices. Pediatr Res 60:371–376. https://doi.org/10.1203/01.pdr.0000239817.39407.61

Article 

留言 (0)

沒有登入
gif