Karyotypes of water frogs from the Pelophylax esculentus complex: results of cross-species chromosomal painting

Akın Ç, Can Bilgin C, Beerli P, Westaway R, Ohst T, Litvinchuk SN, Uzzell T, Bilgin M, Hotz H, Guex G-D, Plötner J (2010) Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by geological processes and climate change in the Late Cenozoic. J Biogeogr 37:2111–2124

Article  PubMed  PubMed Central  Google Scholar 

Albert PS, Zhang T, Semrau K, Rouillard J-M, Kao Y-H, Wang C-JR, Danilova TV, Jiang J, Birchler JA (2019) Whole-chromosome paints in maize reveal rearrangements, nuclear domains, and chromosomal relationships. Proc Natl Acad Sci 116:1679–1685

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alexander AM, Su Y-C, Oliveros CH, Olson KV, Travers SL, Brown RM (2017) Genomic data reveals potential for hybridization, introgression, and incomplete lineage sorting to confound phylogenetic relationships in an adaptive radiation of narrow-mouth frogs. Evolution 71:475–488

Article  PubMed  Google Scholar 

Alix K, Gérard PR, Schwarzacher T, (Pat) Heslop-Harrison JS (2017) Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot 120:183–194

Article  PubMed  PubMed Central  Google Scholar 

Arioli M (2007) Reproductive patterns and population genetics in pure hybridogenetic water frog populations of Rana esculenta (PhD Thesis). University of Zurich

Baack EJ, Whitney KD, Rieseberg LH (2005) Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol 167:623–630

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berger L (1968) Morphology of the F1 generation of various crosses within Rana esculenta-complex. Acta Zool Cracoviensia 13:301–324

Google Scholar 

Bucci S, Ragghianti M, Mancino G, Berger L, Hotz H, Uzzell T (1990) Lampbrush and mitotic chromosomes of the hemiclonally reproducing hybrid Rana esculenta and its parental species. J Exp Zool 255:37–56

Article  CAS  PubMed  Google Scholar 

Bullini L (1985) Speciation by hybridization in animals. Boll Zool 52:121–137

Article  Google Scholar 

Chmielewska M, Dedukh D, Haczkiewicz K, Rozenblut-Kościsty B, Kaźmierczak M, Kolenda K, Serwa E, Pietras-Lebioda A, Krasikova A, Ogielska M (2018) The programmed DNA elimination and formation of micronuclei in germ line cells of the natural hybridogenetic water frog Pelophylax esculentus. Sci Rep 8:7870

Article  PubMed  PubMed Central  Google Scholar 

Chmielewska M, Kaźmierczak M, Rozenblut-Kościsty B, Kolenda K, Dudzik A, Dedukh D, Ogielska M (2022) Genome elimination from the germline cells in diploid and triploid male water frogs Pelophylax esculentus. Front Cell Dev Biol 10:1008506

Article  PubMed  PubMed Central  Google Scholar 

Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2:292–301

Article  CAS  PubMed  Google Scholar 

Dawley RM, Bogart JP (1989) Evolution and ecology of unisexual vertebrates. New York State Museum, Albany, NY

De Lucca EJ, Jim J, Foresti F (1974) Chromosomal studies in twelve species of Leptodactylidae and one Brachycephalidae. Caryologia 27:183–192

Article  Google Scholar 

Dedukh D, Mazepa G, Shabanov D, Rosanov J, Litvinchuk S, Borkin L, Saifitdinova A, Krasikova A (2013) Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine. BMC Genet 14:26

Article  PubMed  PubMed Central  Google Scholar 

Dedukh D, Litvinchuk S, Rosanov J, Mazepa G, Saifitdinova A, Shabanov D, Krasikova A (2015) Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS ONE 10:e0123304

Article  PubMed  PubMed Central  Google Scholar 

Dedukh D, Litvinchuk J, Svinin A, Litvinchuk S, Rosanov J, Krasikova A (2019) Variation in hybridogenetic hybrid emergence between populations of water frogs from the Pelophylax esculentus complex. PLoS ONE 14:e0224759

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dedukh D, Riumin S, Chmielewska M, Rozenblut-Kościsty B, Kolenda K, Kaźmierczak M, Dudzik A, Ogielska M, Krasikova A (2020) Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci Rep 10:8720

Article  CAS  PubMed  PubMed Central  Google Scholar 

Denaro L (1972) Karyotypes of Leptodactylidae Anurans. J Herpetol 6:71–74

Article  Google Scholar 

Derjusheva S, Kurganova A, Krasikova A, Saifitdinova A, Habermann FA, Gaginskaya E (2003) Precise identification of chicken chromosomes in the lampbrush form using chromosome painting probes. Chromosome Res 11:749–757

Article  CAS  PubMed  Google Scholar 

Doležálková M, Sember A, Marec F, Ráb P, Plötner J, Choleva L (2016) Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? BMC Genet 17:100

Article  PubMed  PubMed Central  Google Scholar 

Doležálková-Kaštánková M, Pruvost NBM, Plötner J, Reyer H-U, Janko K, Choleva L (2018) All-male hybrids of a tetrapod Pelophylax esculentus share its origin and genetics of maintenance. Biol Sex Differ 9:13

Article  PubMed  PubMed Central  Google Scholar 

Dufresnes C, Denoël M, di Santo L, Dubey S (2017) Multiple uprising invasions of Pelophylax water frogs, potentially inducing a new hybridogenetic complex. Sci Rep 7:6506

Article  PubMed  PubMed Central  Google Scholar 

Dufresnes C, Litvinchuk SN, Rozenblut-Kościsty B, Rodrigues N, Perrin N, Crochet P, Jeffries DL (2020) Hybridization and introgression between toads with different sex chromosome systems. Evol Lett 4:444–456

Article  PubMed  PubMed Central  Google Scholar 

Ebendal T (1977) Karyotype and serum protein pattern in a Swedish population of Rana lessonae (Amphibia, Anura). Hereditas 85:75–80

Article  Google Scholar 

Kalaycı TE, Kalaycı G, Özdemir N (2017) Phylogeny and systematics of Anatolian mountain frogs. Biochem Syst Ecol 73:26–34

Article  Google Scholar 

Fontdevila A (2019) Hybrid genome evolution by transposition: an update. J Hered 110:124–136

Article  CAS  PubMed  Google Scholar 

Frost DR (2020) Amphibian species of the world: an online reference. Version 6.0 Electronic Database. Am Mus Nat Hist NY

Fry K, Salser W (1977) Nucleotide sequences of HS-alpha satellite DNA from kangaroo rat Dipodomys ordii and characterization of similar sequences in other rodents. Cell 12:1069–1084

Article  CAS  PubMed  Google Scholar 

Giménez MD, Panithanarak T, Hauffe HC, Searle JB (2016) Empirical demonstration of hybrid chromosomal races in house mice. Evol Int J Org Evol 70:1651–1658

Article  Google Scholar 

Gokhman VE, Cioffi M, de König B, Pollmann C, Gantert M, Krogmann C, Steidle L, Kosyakova N, Steidle JLM, Liehr T, Al-Rikabi A (2019) Microdissection and whole chromosome painting confirm karyotype transformation in cryptic species of the Lariophagus distinguendus (Förster, 1841) complex (Hymenoptera: Pteromalidae). PLOS ONE 14:e0225257

Article  CAS  PubMed  PubMed Central  Google Scholar 

Graf J-D, Polls-Pelaz M (1989) Evolutionary genetics of the Rana esculenta complex., in: Dawley RM, Bogart JP (Eds.), Evolution and ecology of unisexual vertebrates. 289–302

Graphodatsky AS, Trifonov VA, Stanyon R (2011) The genome diversity and karyotype evolution of mammals. Mol Cytogenet 4:22

Article  PubMed  PubMed Central  Google Scholar 

Green D, Sessions SK (1991) Amphibian cytogenetics and evolution -, 1st edn. Academic Press Inc, Harcourt Brace Jovanovich, Boston

Google Scholar 

Hemleben V, Kovarik A, Torres-Ruiz RA, Volkov RA, Beridze T (2007) Plant highly repeated satellite DNA: molecular evolution, distribution and use for identification of hybrids. Syst Biodivers 5:277–289

Article  Google Scholar 

Heppich S (1978) Hybridogenesis in Rana esculenta: C-band karyotypes of Rana ridibunda, Rana lessonae and Rana esculenta. J Zool Syst Evol Res 16:27–39

Article  Google Scholar 

Heppich S, Tunner HG, Greilhuber J (1982) Premeiotic chromosome doubling after genome elimination during spermatogenesis of the species hybrid Rana esculenta. Theor Appl Genet 61:101–104

Article  CAS  PubMed  Google Scholar 

Hikosaka A, Kawahara A (2004) Lineage-specific tandem repeats riding on a transposable element of MITE in Xenopus evolution: a new mechanism for creating simple sequence repeats. J Mol Evol 59:738–746

Article  CAS  PubMed  Google Scholar 

Ivanov VG, Madianov NN (1973) Comparative karyology of frogs of the genus Rana. Tsitologiia 15:920–928

CAS  PubMed  Google Scholar 

Jauch A, Wienberg J, Stanyon R, Arnold N, Tofanelli S, Ishida T, Cremer T (1992) Reconstruction of genomic rearrangements in great apes and gibbons by chromosome painting. Proc Natl Acad Sci 89:8611–8615

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kierzkowski P, Paśko Ł, Rybacki M, Socha M, Ogielska M (2011) Genome dosage effect and hybrid morphology—the case of the hybridogenetic water frogs of the Pelophylax esculentus complex. Ann Zool Fenn 48:56–66

Article  Google Scholar 

Knudsen K, Scheel JJ (1975) Contribution to systematics of European green frogs, in: Bulletin de la societe zoologique de France-evolution et zoologie. Soc Zoologique France Inst Oceanographique 195 Rue Saint-Jacques, 677–679

Koref-Santibañez S (1979) The karyotypes of Rana lessonae Camerano, Rana ridibunda Pallas and the hybrid form Rana “esculenta” Linne (Anura). Mitt Zool Mus Berl 55:115–124

Google Scholar 

Koref-Santibanez S, Günther R (1980) Karyological and serological studies in Rana lessonae, R. ridibunda and in their hybrid R. ‘esculenta’(Amphibia, Anura). Genetica 52:195–207

留言 (0)

沒有登入
gif