Towards oxidoreductase-based processes for the removal of antibiotics from wastewater

Abejón R, De Cazes M, Belleville MP, Sanchez-Marcano J (2015) Large-scale enzymatic membrane reactors for tetracycline degradation in WWTP effluents. Water Res 73:118–131. https://doi.org/10.1016/j.watres.2015.01.012

Article  CAS  Google Scholar 

Ahmad S, Sebai W, Belleville M-P et al (2021) Enzymatic monolithic reactors for micropollutants degradation. Catal Today 362:62–71. https://doi.org/10.1016/j.cattod.2020.04.048

Article  CAS  Google Scholar 

Ahmad S, Sebai W, Belleville MP et al (2022) Experimental and modeling of tetracycline degradation in water in a flow-through enzymatic monolithic reactor. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-21204-y

Article  Google Scholar 

Al-Maqdi KA, Hisaindee S, Rauf MA, Ashraf SS (2018) Detoxification and degradation of sulfamethoxazole by soybean peroxidase and UV + H2O2 remediation approaches. Chem Eng J 352:450–458. https://doi.org/10.1016/j.cej.2018.07.036

Article  CAS  Google Scholar 

Al-sareji OJ, Meiczinger M, Somogyi V et al (2023) Removal of emerging pollutants from water using enzyme-immobilized activated carbon from coconut shell. J Environ Chem Eng 11:109803. https://doi.org/10.1016/j.jece.2023.109803

Article  CAS  Google Scholar 

Alharbi SK, Nghiem LD, van de Merwe JP et al (2019) Degradation of diclofenac, trimethoprim, carbamazepine, and sulfamethoxazole by laccase from Trametes versicolor : transformation products and toxicity of treated effluent. Biocatal Biotransform 37:1–10. https://doi.org/10.1080/10242422.2019.1580268

Article  CAS  Google Scholar 

Almaqdi KA, Morsi R, Alhayuti B et al (2019) LC-MSMS based screening of emerging pollutant degradation by different peroxidases. BMC Biotechnol 19:83. https://doi.org/10.1186/s12896-019-0574-y

Article  CAS  Google Scholar 

Alokpa K, Lafortune F, Cabana H (2022) Application of laccase and hydrolases for trace organic contaminants removal from contaminated water. Environ Adv 8:100243. https://doi.org/10.1016/j.envadv.2022.100243

Article  CAS  Google Scholar 

Alsadik A, Athamneh K, Yousef AF et al (2021) Efficient degradation of 2-mercaptobenzothiazole and other emerging pollutants by recombinant bacterial dye-decolorizing peroxidases. Biomolecules. https://doi.org/10.3390/biom11050656

Article  Google Scholar 

Ardao I, Magnin D, Agathos SN (2015) Bioinspired production of magnetic laccase-biotitania particles for the removal of endocrine disrupting chemicals. Biotechnol Bioeng 112:1986–1996. https://doi.org/10.1002/bit.25612

Article  CAS  Google Scholar 

Ashrafi SD, Nasseri MA, Alimohammadi S et al (2020) Application of free and immobilized laccase for removal and detoxification of fluoroquinolones from aqueous solution. Glob NEST J. https://doi.org/10.30955/gnj.002973

Article  Google Scholar 

Asif MB, Hai FI, Dhar BR et al (2018) Impact of simultaneous retention of micropollutants and laccase on micropollutant degradation in enzymatic membrane bioreactor. Bioresour Technol 267:473–480. https://doi.org/10.1016/j.biortech.2018.07.066

Article  CAS  Google Scholar 

Asif MB, Hai FI, Singh L et al (2017a) Degradation of pharmaceuticals and personal care products by white-Rot fungi—a critical review. Curr Pollut Reports 3:88–103. https://doi.org/10.1007/s40726-017-0049-5

Article  CAS  Google Scholar 

Asif MB, Nguyen LN, Hai FI et al (2017b) Integration of an enzymatic bioreactor with membrane distillation for enhanced biodegradation of trace organic contaminants. Int Biodeterior Biodegrad 124:73–81. https://doi.org/10.1016/j.ibiod.2017.06.012

Article  CAS  Google Scholar 

Athamneh K, Alneyadi A, Alsadik A et al (2022) Efficient degradation of various emerging pollutants by wild type and evolved fungal DyP4 peroxidases. PLoS ONE 17:e0262492. https://doi.org/10.1371/journal.pone.0262492

Article  CAS  Google Scholar 

Aus der Beek T, Weber FA, Bergmann A, et al (2016) Pharmaceuticals in the environment-Global occurrences and perspectives. Environ Toxicol Chem 35:823–835. https://doi.org/10.1002/etc.3339

Ba S, Haroune L, Soumano L et al (2018) A hybrid bioreactor based on insolubilized tyrosinase and laccase catalysis and microfiltration membrane remove pharmaceuticals from wastewater. Chemosphere 201:749–755. https://doi.org/10.1016/j.chemosphere.2018.03.022

Article  CAS  Google Scholar 

Ba S, Vinoth Kumar V (2017) Recent developments in the use of tyrosinase and laccase in environmental applications. Crit Rev Biotechnol 37:819–832. https://doi.org/10.1080/07388551.2016.1261081

Article  Google Scholar 

Baldrian P (2006) Fungal laccases – occurrence and properties. FEMS Microbiol Rev 30:215–242. https://doi.org/10.1111/j.1574-4976.2005.00010.x

Article  CAS  Google Scholar 

Bankole PO, Omoni VT, Tennison-Omovoh CA et al (2022) Novel laccase from Xylaria polymorpha and its efficiency in the biotransformation of pharmaceuticals: optimization of operational conditions, comparative effect of redox-mediators and toxicity studies. Colloids Surf B Biointerfaces 217:112675. https://doi.org/10.1016/j.colsurfb.2022.112675

Article  CAS  Google Scholar 

Barber-Zucker S, Mindel V, Garcia-Ruiz E et al (2022) Stable and functionally diverse versatile peroxidases designed directly from sequences. J Am Chem Soc 144:3564–3571. https://doi.org/10.1021/jacs.1c12433

Article  CAS  Google Scholar 

Barber EA, Liu Z, Smith SR (2020) Organic contaminant biodegradation by oxidoreductase enzymes in wastewater treatment. Microorganisms 8:122. https://doi.org/10.3390/microorganisms8010122

Article  CAS  Google Scholar 

Battistuzzi G, Bellei M, Bortolotti CA, Sola M (2010) Redox properties of heme peroxidases. Arch Biochem Biophys 500:21–36. https://doi.org/10.1016/j.abb.2010.03.002

Article  CAS  Google Scholar 

Becker D, Varela Della Giustina S, Rodriguez-Mozaz S et al (2016) Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase – Degradation of compounds does not always eliminate toxicity. Bioresour Technol 219:500–509. https://doi.org/10.1016/j.biortech.2016.08.004

Article  CAS  Google Scholar 

Bensoussan C, de Gunzburg J (2012) Methods for the Inactivation of Antibiotics (WO2012007536A1). WIPO International bureau. https://patents.google.com/patent/WO2012007536A1/en

Bilal M, Adeel M, Rasheed T et al (2019a) Emerging contaminants of high concern and their enzyme-assisted biodegradation – a review. Environ Int 124:336–353. https://doi.org/10.1016/j.envint.2019.01.011

Article  CAS  Google Scholar 

Bilal M, Ashraf SS, Barceló D, Iqbal HMN (2019b) Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Sci Total Environ 691:1190–1211. https://doi.org/10.1016/j.scitotenv.2019.07.224

Article  CAS  Google Scholar 

Bollag J (1992) Decontaminating soil with enzymes. Environ Sci Technol 26:1876–1881. https://doi.org/10.1021/es00034a002

Article  CAS  Google Scholar 

Bommarius AS (2023) Total turnover number – a key criterion for process evaluation. Chem-Ing-Tech 95:491–497. https://doi.org/10.1002/cite.202200177

Article  CAS  Google Scholar 

Bormann S, Burek BO, Ulber R, Holtmann D (2020) Immobilization of unspecific peroxygenase expressed in Pichia pastoris by metal affinity binding. Mol Catal 492:110999. https://doi.org/10.1016/j.mcat.2020.110999

Article  CAS  Google Scholar 

Bornscheuer UT, Huisman GW, Kazlauskas RJ et al (2012) Engineering the third wave of biocatalysis. Nature 485:185–194. https://doi.org/10.1038/nature11117

Article  CAS  Google Scholar 

Cañas AI, Camarero S (2010) Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv 28:694–705. https://doi.org/10.1016/j.biotechadv.2010.05.002

Article  CAS  Google Scholar 

Carvalho RH, Lemos F, Lemos MANDA et al (2006) Kinetic modelling of phenol co-oxidation using horseradish peroxidase. Bioprocess Biosyst Eng 29:99–108. https://doi.org/10.1007/s00449-006-0057-0

Article  CAS  Google Scholar 

Catherine H, Penninckx M, Frédéric D (2016) Product formation from phenolic compounds removal by laccases: a review. Environ Technol Innov 5:250–266. https://doi.org/10.1016/j.eti.2016.04.001

Article  Google Scholar 

Catucci G, Valetti F, Sadeghi SJ, Gilardi G (2020) Biochemical features of dye-decolorizing peroxidases: current impact on lignin degradation. Biotechnol Appl Biochem 67:751–759. https://doi.org/10.1002/bab.2015

Article  CAS  Google Scholar 

Chaturvedi P, Giri BS, Shukla P, Gupta P (2021) Recent advancement in remediation of synthetic organic antibiotics from environmental matrices: challenges and perspective. Bioresour Technol 319:124161. https://doi.org/10.1016/j.biortech.2020.124161

Article  CAS  Google Scholar 

Chen J, Liu J, Chen B et al (2023) Effective biodegradation of chlorophenols, sulfonamides, and their mixtures by bacterial laccase immobilized on chitin. Ecotoxicol Environ Saf 256:114856. https://doi.org/10.1016/j.ecoenv.2023.114856

Article  CAS  Google Scholar 

Chen Y, Stemple B, Kumar M, Wei N (2016) Cell surface display fungal laccase as a renewable biocatalyst for degradation of persistent micropollutants bisphenol A and sulfamethoxazole. Environ Sci Technol 50:8799–8808. https://doi.org/10.1021/acs.est.6b01641

Article  CAS  Google Scholar 

Cho S-H, Jang A, Bishop PL, Moon S-H (2010) Kinetics determination of electrogenerated hydrogen peroxide (H2O2) using carbon fiber microelectrode in electroenzymatic degradation of phenolic compounds. J Hazard Mater 175:253–257. https://doi.org/10.1016/j.jhazmat.2009.09.157

Article  CAS  Google Scholar 

Cuprys A, Thomson P, Ouarda Y et al (2020) Ciprofloxacin removal via sequential electro-oxidation and enzymatic oxidation. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121890

Article  Google Scholar 

Cuprys A, Thomson P, Suresh G et al (2022) Potential of agro-industrial produced laccase to remove ciprofloxacin. Environ Sci Pollut Res 29:10112–10121. https://doi.org/10.1007/s11356-021-13578-2

Article  CAS 

留言 (0)

沒有登入
gif