Elucidating electron transfer pathways in N2OR catalysis for mitigation of N2O emissions: a comprehensive review

Adman ET (1991) Copper protein structures. Adv Protein Chem 42:145–197. https://doi.org/10.1016/s0065-3233(08)60536-7

Article  CAS  PubMed  Google Scholar 

Ali M, Stein N, Mao Y, Shahid S, Schmidt M, Bennett B, Pacheco AA (2019) Trapping of a Pu-tative Intermediate in the cytochrome c nitrite reductase (ccNiR)-catalyzed reduction of nitrite: implications for the ccNiR reaction mechanism. J Am Chem Soc 141:13358–13371. https://doi.org/10.1021/jacs.9b03036

Article  CAS  PubMed  Google Scholar 

Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH (2017) Multifunctional Cytochrome c : learning new tricks from an old dog. Chem Rev 117:13382–13460. https://doi.org/10.1021/acs.chemrev.7b00257

Article  CAS  PubMed  Google Scholar 

Andrew CR, Yeom H, Valentine JS, Karlsson BG, Van Pouderoyen G, Canters GW, Loehr TM, Sanders-Loehr J, Bonander N (1994) Raman spectroscopy as an indicator of Cu-S bond length in type 1 and type 2 copper cysteinate proteins. J Am Chem Soc 116:11489–11498. https://doi.org/10.1021/ja00104a032

Article  CAS  Google Scholar 

Bennett SP, Torres MJ, Soriano-Laguna MJ, Richardson DJ, Gates AJ, Le Brun NE (2020) nosX is essential for whole-cell N2O reduction in Paracoccus denitrificans but not for assembly of copper centres of nitrous oxide reductase. Microbiology (reading) 166:909–917. https://doi.org/10.1099/mic.0.000955

Article  CAS  PubMed  Google Scholar 

Berks BC, Baratta D, Richardson DJ, Ferguson SJ (1993) Purification and characterization of a nitrous oxide reductase from Thiosphaera pantotropha. Implications for the mechanism of aerobic nitrous oxide reduction. Eur J Biochem 212:467–476. https://doi.org/10.1111/j.1432-1033.1993.tb17683.x

Article  CAS  PubMed  Google Scholar 

Bertini I, Cavallaro G, Rosato A (2006) Cytochrome c: occurrence and functions. Chem Rev 106:90–115. https://doi.org/10.1021/cr050241v

Article  CAS  PubMed  Google Scholar 

Brown K, Djinovic-Carugo K, Haltia T, Cabrito I, Saraste M, Moura JG, Moura I, Tegoni M, Cambillau C (2000a) Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase: evidence of a bridging inorganic sulfur *. J Biol Chem 275:41133–41136. https://doi.org/10.1074/jbc.M008617200

Article  CAS  PubMed  Google Scholar 

Brown K, Tegoni M, Prudêncio M, Pereira AS, Besson S, Moura JJ, Moura I, Cambillau C (2000b) A novel type of catalytic copper cluster in nitrous oxide reductase. Nat Struct Biol 7:191–195. https://doi.org/10.1038/73288

Article  CAS  PubMed  Google Scholar 

Canonica F, Klose D, Ledermann R, Sauer MM, Abicht HK, Quade N, Gossert AD, Chesnov S, Fischer H-M, Jeschke G, Hennecke H, Glockshuber R (2019) Structural basis and mechanism for metallochaperone-assisted assembly of the CuA center in cytochrome oxidase. Sci Adv 5:eaaw8478. https://doi.org/10.1126/sciadv.aaw8478

Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Carreira C, Pauleta SR, Moura I (2017) The catalytic cycle of nitrous oxide reductase: the enzyme that catalyzes the last step of denitrification. J Inorg Biochem 177:423–434. https://doi.org/10.1016/j.jinorgbio.2017.09.007

Article  CAS  PubMed  Google Scholar 

Carreira C, dos Santos MMC, Pauleta SR, Moura I (2020a) Proton-coupled electron transfer mechanisms of the copper centres of nitrous oxide reductase from Marinobacter hydrocarbonoclasticus: an electrochemical study. Bioelectrochemistry 133:107483. https://doi.org/10.1016/j.bioelechem.2020.107483

Article  CAS  PubMed  Google Scholar 

Carreira C, Nunes RF, Mestre O, Moura I, Pauleta SR (2020b) The effect of pH on Marinobacter hydrocarbonoclasticus denitrification pathway and nitrous oxide reductase. J Biol Inorg Chem 25:927–940. https://doi.org/10.1007/s00775-020-01812-0

Article  CAS  PubMed  Google Scholar 

Chan JM, Bollinger JA, Grewell CL, Dooley DM (2004) Reductively activated nitrous oxide reductase reacts directly with substrate. J Am Chem Soc 126:3030–3031. https://doi.org/10.1021/ja0398868

Article  CAS  PubMed  Google Scholar 

Chen H, Zeng L, Wang D, Zhou Y, Yang X (2020) Recent advances in nitrous oxide production and mitigation in wastewater treatment. Water Res 184:116168. https://doi.org/10.1016/j.watres.2020.116168

Article  CAS  PubMed  Google Scholar 

Coyle CL, Zumft WG, Kroneck PMH, Korner H, Jakob W (1985) Nitrous oxide reductase from denitrifying. Pseudomonas perfectomarina purification and properties of a novel multicopper enzyme. Eur J Biochem 153:459–467. https://doi.org/10.1111/j.1432-1033.1985.tb09324.x

Article  CAS  PubMed  Google Scholar 

Dance I (2023) The HD reaction of nitrogenase: a detailed mechanism. Chem A Eur J 29:e202202502. https://doi.org/10.1002/chem.202202502

Article  CAS  Google Scholar 

Dell’Acqua S, Pauleta SR, Monzani E, Pereira AS, Casella L, Moura JJG, Moura I (2008) Electron transfer complex between nitrous oxide reductase and cytochrome c 552 from Pseudomonas nautica : kinetic, nuclear magnetic resonance, and docking studies. Biochemistry 47:10852–10862. https://doi.org/10.1021/bi801375q

Article  CAS  PubMed  Google Scholar 

Dell’Acqua S, Pauleta SR, Paes De Sousa PM, Monzani E, Casella L, Moura JJG, Moura I (2010) A new CuZ active form in the catalytic reduction of N2O by nitrous oxide reductase from Pseudomonas nautica. J Biol Inorg Chem 15:967–976. https://doi.org/10.1007/s00775-010-0658-6

Article  CAS  PubMed  Google Scholar 

Dell’Acqua S, Moura I, Moura JJG, Pauleta SR (2011a) The electron transfer complex between nitrous oxide reductase and its electron donors. J Biol Inorg Chem 16:1241–1254. https://doi.org/10.1007/s00775-011-0812-9

Article  CAS  PubMed  Google Scholar 

Dell’Acqua S, Pauleta SR, Moura I, Moura JJG (2011b) The tetranuclear copper active site of nitrous oxide reductase: the CuZ center. J Biol Inorg Chem 16:183–194. https://doi.org/10.1007/s00775-011-0753-3

Article  CAS  PubMed  Google Scholar 

Dell’Acqua S, Pauleta SR, Moura JJG, Moura I (2012) Biochemical characterization of the purple form of Marinobacter hydrocarbonoclasticus nitrous oxide reductase. Phil Trans R Soc B 367:1204–1212. https://doi.org/10.1098/rstb.2011.0311

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dennison C, Sato K (2002) Paramagnetic 1H NMR spectrum of nickel (II) pseudoazurin: investigation of the active site structure and the acid and alkaline transitions. Inorg Chem 41:6662–6672. https://doi.org/10.1021/ic020303p

Article  CAS  PubMed  Google Scholar 

Dreusch A, Riester J, Kroneck PMH, Zumft WG (1996) Mutation of the conserved Cys165 outside of the CuA domain destabilizes nitrous oxide reductase but maintains its catalytic activity. evidence for disulfide bridges and a putative protein disulfide isomerase gene. Eur J Biochem 237:447–453. https://doi.org/10.1111/j.1432-1033.1996.0447k.x

Article  CAS  PubMed  Google Scholar 

Felgate H, Giannopoulos G, Sullivan MJ, Gates AJ, Clarke TA, Baggs E, Rowley G, Richardson DJ (2012) The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways: Denitrification and nitrous oxide release. Environ Microbiol 14:1788–1800. https://doi.org/10.1111/j.1462-2920.2012.02789.x

Article  CAS  PubMed  Google Scholar 

Fujita K, Dooley DM (2007) Insights into the mechanism of N2O reduction by reductively activated N2O reductase from kinetics and spectroscopic studies of pH effects. Inorg Chem 46:613–615. https://doi.org/10.1021/ic061843f

Article  CAS  PubMed  Google Scholar 

Fujita K, Hirasawa-Fujita M, Brown DE, Obara Y, Ijima F, Kohzuma T, Dooley DM (2012) Direct electron transfer from pseudoazurin to nitrous oxide reductase in catalytic N2O reduction. J Inorg Biochem 115:163–173. https://doi.org/10.1016/j.jinorgbio.2012.07.013

Article  CAS  PubMed  Google Scholar 

Ghimire U, Shrestha NK, Biswas A, Wagner-Riddle C, Yang W, Prasher S, Rudra R, Daggupati P (2020) A review of ongoing advancements in soil and water assessment tool (SWAT) for nitrous oxide (N2O) modeling. Atmosphere 11:450. https://doi.org/10.3390/atmos11050450

Article  ADS  Google Scholar 

Ghosh S, Gorelsky SI, Chen P, Cabrito I, Moura MI, Solomon EI (2003) Activation of N2O reduction by the fully reduced μ4 - sulfide bridged tetranuclear CuZ cluster in nitrous oxide reductase. J Am Chem Soc 125:15708–15709. https://doi.org/10.1021/ja038344n

Article  CAS  PubMed  Google Scholar 

Ghosh S, Gorelsky SI, DeBeer GS, Chan JM, Cabrito I, Dooley DM, Moura JJG, Moura I, Solomon EI (2007) Spectroscopic, computational, and kinetic studies of the μ4 - sulfide-bridged tetranuclear CuZ cluster in N2O reductase: pH effect on the edge ligand and Its contribution to reactivity. J Am Chem Soc 129:3955–3965. https://doi.org/10.1021/ja068059e

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gorelsky SI, Ghosh S, Solomon EI (2006) Mechanism of N2O reduction by the μ4 - S tetranuclear CuZ cluster of nitrous oxide reductase. J Am Chem Soc 128:278–290. https://doi.org/10.1021/ja055856o

Article  CAS  PubMed  Google Scholar 

Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM (2018) Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol 26:43–55. https://doi.org/10.1016/j.tim.2017.07.003

留言 (0)

沒有登入
gif