Mixotrophic and heterotrophic growth of microalgae using acetate from different production processes

Abiusi F, Wijffels RH, Janssen M (2020) Doubling of microalgae productivity by oxygen balanced mixotrophy. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.0c00990

Article  Google Scholar 

Abiusi F, Trompetter E, Pollio A, Wijffels RH, Janssen M (2022) Acid tolerant and acidophilic microalgae: an underexplored world of biotechnological opportunities. Front Microbiol 13:820907. https://doi.org/10.3389/FMICB.2022.820907/BIBTEX

Article  PubMed  PubMed Central  Google Scholar 

Agostino V, Rosenbaum MA (2018) Sulfate-reducing electroautotrophs and their applications in bioelectrochemical systems. Front Energy Res 6:382161. https://doi.org/10.3389/FENRG.2018.00055/BIBTEX

Article  Google Scholar 

Ahmad F, Silva EL, Varesche MBA (2018) Hydrothermal processing of biomass for anaerobic digestion—a review. Renew Sustain Energy Rev 98:108–124. https://doi.org/10.1016/J.RSER.2018.09.008

Article  CAS  Google Scholar 

Alibaba.com Limited [WWW Document], 2024. URL https://www.alibaba.com/ (Accessed 1 March 2024)

Andrews JF (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol Bioeng 10:707–723

Article  CAS  Google Scholar 

Anuar Sharuddin SD, Abnisa F, Wan Daud WMA, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326. https://doi.org/10.1016/J.ENCONMAN.2016.02.037

Article  CAS  Google Scholar 

Araújo R, Vázquez Calderón F, Sánchez López J, Azevedo IC, Bruhn A, Fluch S, Garcia Tasende M, Ghaderiardakani F, Ilmjärv T, Laurans M, Mac Monagail M, Mangini S, Peteiro C, Rebours C, Stefansson T, Ullmann J (2021) Current status of the algae production industry in Europe: an emerging sector of the blue bioeconomy. Front Mar Sci 7:1–24. https://doi.org/10.3389/fmars.2020.626389

Article  Google Scholar 

Bae J, Song Y, Lee H, Shin J, Jin S, Kang S, Cho BK (2022) Valorization of C1 gases to value-added chemicals using acetogenic biocatalysts. Chem Eng J 428:131325. https://doi.org/10.1016/j.cej.2021.131325

Article  CAS  Google Scholar 

Bajracharya S, Ter Heijne A, Dominguez Benetton X, Vanbroekhoven K, Buisman CJN, Strik DPBTB, Pant D (2015) Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode. Bioresour Technol 195:14–24. https://doi.org/10.1016/j.biortech.2015.05.081

Article  CAS  PubMed  Google Scholar 

Bajracharya S, Srikanth S, Mohanakrishna G, Zacharia R, Strik DP, Pant D (2017) Biotransformation of carbon dioxide in bioelectrochemical systems: state of the art and future prospects. J Power Sources 356:256–273. https://doi.org/10.1016/J.JPOWSOUR.2017.04.024

Article  CAS  Google Scholar 

Bakonyi P, Koók L, Rózsenberszki T, Kalauz-Simon V, Bélafi-Bakó K, Nemestóthy N (2023) CO2-refinery through microbial electrosynthesis (MES): a concise review on design operation biocatalysts and perspectives. J CO2 Util 67:102348. https://doi.org/10.1016/J.JCOU.2022.102348

Article  CAS  Google Scholar 

Barbosa MJ, Janssen M, Südfeld C, D’Adamo S, Wijffels RH (2023) Hypes, hopes, and the way forward for microalgal biotechnology. Trends Biotechnol 41:452–471. https://doi.org/10.1016/J.TIBTECH.2022.12.017

Article  CAS  PubMed  Google Scholar 

Baroukh C, Turon V, Bernard O (2017) Dynamic metabolic modeling of heterotrophic and mixotrophic microalgal growth on fermentative wastes. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1005590

Article  PubMed  PubMed Central  Google Scholar 

Bauer L, Ranglová K, Masojídek J, Drosg B, Meixner K (2021) Digestate as sustainable nutrient source for microalgae—challenges and prospects. Appl Sci 11:1056. https://doi.org/10.3390/APP11031056

Article  CAS  Google Scholar 

Bian B, Shi L, Katuri KP, Xu J, Wang P, Saikaly PE (2020) Efficient solar-to-acetate conversion from CO2 through microbial electrosynthesis coupled with stable photoanode. Appl Energy 278:115684. https://doi.org/10.1016/J.APENERGY.2020.115684

Article  CAS  Google Scholar 

Bouarab L, Dauta A, Loudiki M (2004) Heterotrophic and mixotrophic growth of Micractinium pusillum Fresenius in the presence of acetate and glucose:effect of light and acetate gradient concentration. Water Res 38:2706–2712. https://doi.org/10.1016/J.WATRES.2004.03.021

Article  CAS  PubMed  Google Scholar 

Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst Biol 3:1–14. https://doi.org/10.1186/1752-0509-3-4/TABLES/7

Article  Google Scholar 

Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2012.11.030

Article  Google Scholar 

Casal M, Paiva S, Queirós O, Soares-Silva I (2008) Transport of carboxylic acids in yeasts. FEMS Microbiol Rev 32:974–994. https://doi.org/10.1111/J.1574-6976.2008.00128.X

Article  CAS  PubMed  Google Scholar 

Cerón García MC, Sánchez Mirón A, Fernández Sevilla JM, Molina Grima E, García Camacho F (2005) Mixotrophic growth of the microalga Phaeodactylum tricornutum: Influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem 40:297–305. https://doi.org/10.1016/J.PROCBIO.2004.01.016

Article  Google Scholar 

Cestellos-Blanco S, Friedline S, Sander KB, Abel AJ, Kim JM, Clark DS, Arkin AP, Yang P (2021) Production of PHB from CO2-derived acetate with minimal processing assessed for space biomanufacturing. Front Microbiol 12:700010. https://doi.org/10.3389/FMICB.2021.700010/BIBTEX

Article  PubMed  PubMed Central  Google Scholar 

Chalima A, Oliver L, De Castro LF, Karnaouri A, Dietrich T, Topakas E (2017) Utilization of volatile fatty acids from microalgae for the production of high added value compounds. Fermentataion 3:54. https://doi.org/10.3390/FERMENTATION3040054

Article  Google Scholar 

Chalima A, Hatzidaki A, Karnaouri A, Topakas E (2019) Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids. Appl Energy 241:130–138. https://doi.org/10.1016/J.APENERGY.2019.03.058

Article  CAS  Google Scholar 

Chang Y, Wu Z, Bian L, Feng D, Leung DYC (2013) Cultivation of Spirulina platensis for biomass production and nutrient removal from synthetic human urine. Appl Energy 102:427–431. https://doi.org/10.1016/J.APENERGY.2012.07.024

Article  CAS  Google Scholar 

Chen F, Johns MR (1994) Substrate inhibition of Chlamydomonas reinhardtii by acetate in heterotrophic culture. Process Biochem 29:245–252. https://doi.org/10.1016/0032-9592(94)80064-2

Article  CAS  Google Scholar 

Chen F, Johns MR (1996a) Relationship between substrate inhibition and maintenance energy of Chlamydomonas reinhardtii in heterotrophic culture. J Appl Phycol 8:15–19. https://doi.org/10.1007/BF02186216/METRICS

Article  Google Scholar 

Chen F, Johns MR (1996b) Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochem 31:601–604. https://doi.org/10.1016/S0032-9592(96)00006-4

Article  CAS  Google Scholar 

Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18:603–608. https://doi.org/10.1007/BF00140211/METRICS

Article  CAS  Google Scholar 

Chong CC, Cheng YW, Ishak S, Lam MK, Lim JW, Tan IS, Show PL, Lee KT (2022) Anaerobic digestate as a low-cost nutrient source for sustainable microalgae cultivation: a way forward through waste valorization approach. Sci Total Environ 803:150070. https://doi.org/10.1016/J.SCITOTENV.2021.150070

Article  CAS  PubMed  Google Scholar 

Christodoulou X, Velasquez-Orta SB (2016) Microbial electrosynthesis and anaerobic fermentation: an economic evaluation for acetic acid production from CO2 and CO. Environ Sci Technol 50:11234–11242. https://doi.org/10.1021/acs.est.6b02101

Article  CAS  PubMed  Google Scholar 

Chuka-ogwude D, Ogbonna J, Moheimani NR (2020) A review on microalgal culture to treat anaerobic digestate food waste effluent. Algal Res 47:101841. https://doi.org/10.1016/J.ALGAL.2020.101841

Article  Google Scholar 

Combres C, Laliberté G, Reyssac JS, de la Noüe J (1994) Effect of acetate on growth and ammonium uptake in the microalga Scenedesmus obliquus. Physiol Plant 91:729–734. https://doi.org/10.1111/j.1399-3054.1994.tb03012.x

Article  CAS  Google Scholar 

European Commission (2022) President’s speech at “H2Poland” [WWW Document]. URL https://ec.europa.eu/commission/presscorner/detail/en/speech_22_3123 (Accessed 9 Jan 2024)

Cristiani L, Ferretti J, Majone M, Villano M, Zeppilli M (2022) Autotrophic acetate production under hydrogenophilic and bioelectrochemical conditions with a thermally treated mixed culture. Membranes (Basel). https://doi.org/10.3390/membranes12020126

Article  PubMed  Google Scholar 

Dahlqvist A, Ståhl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A 97:6487–6492. https://doi.org/10.1073/pnas.120067297

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Swaaf ME, Sijtsma L, Pronk JT (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672. https://doi.org/10.1002/bit.10513

Article  CAS  PubMed  Google Scholar 

Dessì P, Buenaño-Vargas C, Martínez-Sosa S, Mills S, Trego A, Ijaz UZ, Pant D, Puig S, O’Flaherty V, Farràs P (2023) Microbial electrosynthesis of acetate from CO2 in three-chamber cells with gas diffusion biocathode under moderate saline conditions. Environ Sci Ecotechnology 16:100261. https://doi.org/10.1016/J.ESE.2023.100261

Article  Google Scholar 

留言 (0)

沒有登入
gif