EphrinA5 regulates cell motility by modulating Snhg15/DNA triplex-dependent targeting of DNMT1 to the Ncam1 promoter

Spill F, Reynolds DS, Kamm RD, Zaman MH. Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol. 2016;40:41–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisenberg L, Eisenberg-Bord M, Eisenberg-Lerner A, Sagi-Eisenberg R. Metabolic alterations in the tumor microenvironment and their role in oncogenesis. Cancer Lett. 2020;484:65–71.

Article  CAS  PubMed  Google Scholar 

Manzo G. Similarities between embryo development and cancer process suggest new strategies for research and therapy of tumors: a new point of view. Front Cell Develop Biol. 2019;7:20.

Article  Google Scholar 

Gerstmann K, Pensold D, Symmank J, Khundadze M, Hübner CA, Bolz J, Zimmer G. Thalamic afferents influence cortical progenitors via ephrin A5-EphA4 interactions. Development. 2015;142(1):140–50.

Article  CAS  PubMed  Google Scholar 

Steinecke A, Gampe C, Zimmer G, Rudolph J, Bolz J. EphA/ephrin A reverse signaling promotes the migration of cortical interneurons from the medial ganglionic eminence. Development. 2014;141(2):460–71.

Article  CAS  PubMed  Google Scholar 

Zimmer G, Kästner B, Weth F, Bolz J. Multiple effects of ephrin-A5 on cortical neurons are mediated by SRC family kinases. J Neurosci. 2007;27(21):5643–53.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zimmer G, Garcez P, Rudolph J, Niehage R, Weth F, Lent R, Bolz J. Ephrin-A5 acts as a repulsive cue for migrating cortical interneurons. Eur J Neurosci. 2008;28(1):62–73.

Article  PubMed  Google Scholar 

Zimmer G, Rudolph J, Landmann J, Gerstmann K, Steinecke A, Gampe C, Bolz J. Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence-and preoptic area-derived interneurons in the deep and superficial migratory stream. J Neurosci. 2011;31(50):18364–80.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sikkema AH, Den Dunnen WF, Hulleman E, Van Vuurden DG, Garcia-Manero G, Yang H, et al. EphB2 activity plays a pivotal role in pediatric medulloblastoma cell adhesion and invasion. Neuro Oncol. 2012;14(9):1125–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Surawska H, Ma PC, Salgia R. The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev. 2004;15(6):419–33.

Article  CAS  PubMed  Google Scholar 

Uddin MS, Al Mamun A, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM, editors. Epigenetics of Glioblastoma Multiforme: From Molecular Mechanisms to Therapeutic Approaches; 2020: Elsevier.

Li J-J, Liu D-P, Liu G, Xie D. EphrinA5 acts as a tumor suppressor in glioma by negative regulation of epidermal growth factor receptor. Oncogene. 2009;28(15):1759–68.

Article  CAS  PubMed  Google Scholar 

Ricci B, Millner TO, Pomella N, Zhang X, Guglielmi L, Badodi S, et al. Polycomb-mediated repression of EphrinA5 promotes growth and invasion of glioblastoma. Oncogene. 2020;39(12):2523–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hamaoka Y, Negishi M, Katoh H. EphA2 is a key effector of the MEK/ERK/RSK pathway regulating glioblastoma cell proliferation. Cell Signal. 2016;28(8):937–45.

Article  CAS  PubMed  Google Scholar 

Wykosky J, Debinski W. The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res. 2008;6(12):1795–806.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res. 2005;3(10):541–51.

Article  CAS  PubMed  Google Scholar 

Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5–18.

Article  CAS  PubMed  Google Scholar 

Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59.

Article  CAS  PubMed  Google Scholar 

Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

Article  CAS  PubMed  Google Scholar 

Phillips RE, Soshnev AA, Allis CD. Epigenomic reprogramming as a driver of malignant glioma. Cancer Cell. 2020;38(5):647–60.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in the human methylome during differentiation. Genome Res. 2010;20(3):320–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016;167(1):233–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F, Reinhardt R, et al. Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Res. 2017;45(4):1703–13.

Article  CAS  PubMed  Google Scholar 

Al-Kharashi LA, Al-Mohanna FH, Tulbah A, Aboussekhra A. The DNA methyl-transferase protein DNMT1 enhances tumor-promoting properties of breast stromal fibroblasts. Oncotarget. 2018;9(2):2329.

Article  PubMed  Google Scholar 

Gusyatiner O, Hegi ME, editors. Glioma epigenetics: from subclassification to novel treatment options; 2018: Elsevier.

Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet. 2000;24(1):88–91.

Article  CAS  PubMed  Google Scholar 

Symmank J, Bayer C, Reichard J, Pensold D, Zimmer-Bensch G. Neuronal Lhx1 expression is regulated by DNMT1-dependent modulation of histone marks. Epigenetics. 2020;15(11):1259–74.

Article  PubMed  PubMed Central  Google Scholar 

Guo JU, Ma DK, Mo H, Ball MP, Jang M-H, Bonaguidi MA, et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci. 2011;14(10):1345–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, et al. The DNA methylation landscape of human early embryos. Nature. 2014;511(7511):606–10.

Article  CAS  PubMed  Google Scholar 

Skvortsova K, Stirzaker C, Taberlay P. The DNA methylation landscape in cancer. Essays Biochem. 2019;63(6):797–811.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yildiz CB, Zimmer-Bensch G. Role of DNMTs in the Brain. DNA Methyltransferases-Role and Function: Springer; 2022. p. 363–94.

Google Scholar 

Hua C-D, Bian E-B, Chen E-F, Yang Z-H, Tang F, Wang H-L, Zhao B. Repression of Dok7 expression mediated by DNMT1 promotes glioma cells proliferation. Biomed Pharmacother. 2018;106:678–85.

Article  CAS  PubMed  Google Scholar 

Sun J, Tian X, Zhang J, Huang Y, Lin X, Chen L, Zhang S. Regulation of human glioma cell apoptosis and invasion by miR-152-3p through targeting DNMT1 and regulating NF2. J Exp Clin Cancer Res. 2017;36(1):1–13.

Article  CAS  Google Scholar 

Pensold D, Gehrmann J, Pitschelatow G, Walberg A, Braunsteffer K, Reichard J, et al. The Expression of the Cancer-Associated lncRNA Snhg15 Is Modulated by EphrinA5-Induced Signaling. Int J Mol Sci. 2021;22(3):1332.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Laneve P, Rea J, Caffarelli E. Long noncoding RNAs: emerging players in medulloblastoma. Front Pediatr. 2019;7:67.

Article  PubMed  PubMed Central  Google Scholar 

Stackhouse CT, Gillespie GY, Willey CD. Exploring the roles of lncRNAs in GBM pathophysiology and their therapeutic potential. Cells. 2020;9(11):2369.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jiang M-C, Ni J-J, Cui W-Y, Wang B-Y, Zhuo W. Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res. 2019;9(7):1354.

CAS  PubMed  PubMed Central  Google Scholar 

Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: roles in tumorigenesis. Biomed Pharmacother. 2020;123: 109774.

Article  CAS

留言 (0)

沒有登入
gif