Sykes M. Developing pig-to-human organ transplants. Science. 2022;378(6616):135–6.
Article CAS PubMed PubMed Central Google Scholar
Xi J, Zheng W, Chen M, Zou Q, Tang C, Zhou X. Genetically engineered pigs for xenotransplantation: hopes and challenges. Front Cell Dev Biol. 2023;10:1093534.
Article PubMed PubMed Central Google Scholar
Lai L, Park KW, Cheong HT, Kühholzer B, Samuel M, Bonk A, et al. Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol Reprod Dev. 2002;62(3):300–6.
Article CAS PubMed Google Scholar
Hyun S, Lee G, Kim D, Kim H, Lee S, Nam D, et al. Production of Nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent Protein1. Biol Reprod. 2003;69(3):1060–8.
Article CAS PubMed Google Scholar
Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wünsch A, et al. Transgenic pigs as models for translational biomedical research. J Mol Med. 2010;88(7):653–64.
Renner S, Fehlings C, Herbach N, Hofmann A, von Waldthausen DC, Kessler B, et al. Glucose intolerance and reduced proliferation of pancreatic β-Cells in transgenic pigs with impaired glucose-dependent insulinotropic polypeptide function. Diabetes. 2010;59(5):1228–38.
Article CAS PubMed PubMed Central Google Scholar
Stoltz DA, Meyerholz DK, Pezzulo AA, Ramachandran S, Rogan MP, Davis GJ, et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at Birth. Sci Transl Med. 2010;2(29):29ra31.
Article PubMed PubMed Central Google Scholar
Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. Trends Microbiol. 2012;20(1):50–7.
Article CAS PubMed Google Scholar
Fang B, Ren X, Wang Y, Li Z, Zhao L, Zhang M, et al. Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs. Dis Model Mech. 2018;11(10):dmm036632.
Article CAS PubMed PubMed Central Google Scholar
Ju H, Zhang J, Bai L, Mu Y, Du Y, Yang W, et al. The transgenic cloned pig population with integrated and controllable GH expression that has higher feed efficiency and meat production. Sci Rep. 2015;5:10152.
Article CAS PubMed PubMed Central Google Scholar
Zhang X, Li Z, Yang H, Liu D, Cai G, Li G, et al. Novel transgenic pigs with enhanced growth and reduced environmental impact. eLife. 2018;7:e34286.
Article PubMed PubMed Central Google Scholar
Yuan H, Yang L, Zhang Y, Xiao W, Wang Z, Tang X, et al. Current status of genetically modified pigs that are resistant to virus infection. Viruses. 2022;14(2):417.
Article CAS PubMed PubMed Central Google Scholar
Jaeger LA, Spiegel AK, Ing NH, Johnson GA, Bazer FW, Burghardt RC. Functional effects of transforming growth factor β on Adhesive properties of Porcine Trophectoderm. Endocrin. 2005;146(9):3933–42.
Kong X, Tan B, Yin Y, Gao H, Li X, Jaeger LA, et al. l-Arginine stimulates the mTOR signaling pathway and protein synthesis in porcine trophectoderm cells. J Nutr Biochem. 2012;23(9):1178–83.
Article CAS PubMed Google Scholar
Kong X, Wang X, Yin Y, Li X, Gao H, Bazer FW, et al. Putrescine stimulates the mTOR Signaling Pathway and protein synthesis in Porcine Trophectoderm Cells1. Biol Reprod. 2014;91(5):106.
Han D, Jiang L, Gu X, Huang S, Pang J, Wu Y, et al. SIRT3 deficiency is resistant to autophagy-dependent ferroptosis by inhibiting the AMPK/mTOR pathway and promoting GPX4 levels. J Cell Physio. 2020;235(11):8839–51.
Wang H, Liu Y, Zhou T, Gao L, Li J, Wu X et al. Uridine affects amino acid metabolism in the sow-piglets model and increases viability of pTr2 cells. Front Nutr. 2022;9.
Foissac S, Djebali S, Munyard K, Vialaneix N, Rau A, Muret K, et al. Multi-species annotation of transcriptome and chromatin structure in domesticated animals. BMC Biol. 2019;17(1):108.
Article CAS PubMed PubMed Central Google Scholar
Halstead MM, Kern C, Saelao P, Wang Y, Chanthavixay G, Medrano JF, et al. A comparative analysis of chromatin accessibility in cattle, pig, and mouse tissues. BMC Genomics. 2020;21(1):698.
Article CAS PubMed PubMed Central Google Scholar
Kern C, Wang Y, Xu X, Pan Z, Halstead M, Chanthavixay G, et al. Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research. Nat Commun. 2021;12(1):1821.
Article CAS PubMed PubMed Central Google Scholar
Pan Z, Yao Y, Yin H, Cai Z, Wang Y, Bai L, et al. Pig genome functional annotation enhances the biological interpretation of complex traits and human disease. Nat Commun. 2021;12(1):5848.
Article CAS PubMed PubMed Central Google Scholar
Andersson L, Archibald AL, Bottema CD, Brauning R, Burgess SC, Burt DW, et al. Coordinated international action to accelerate genome-to-phenome with FAANG, the functional annotation of animal genomes project. Genome Biol. 2015;16(1):57.
Article PubMed PubMed Central Google Scholar
Kühholzer B, Hawley RJ, Lai L, Kolber-Simonds D, Prather RS. Clonal lines of transgenic fibroblast cells derived from the same fetus result in different development when used for nuclear transfer in pigs. Biol Reprod. 2001;64(6):1695–8.
Ka H, Jaeger LA, Johnson GA, Spencer TE, Bazer FW. Keratinocyte growth factor is Up-Regulated by Estrogen in the Porcine Uterine Endometrium and functions in Trophectoderm Cell Proliferation and differentiation. Endocrin. 2001;142(6):2303–10.
Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat Protoc. 2018;13(5):1006–19.
Article CAS PubMed Google Scholar
Krueger F, James F, Ewels P, Afyounian E, Schuster-Boeckler B. FelixKrueger/TrimGalore: v0.6.7 - DOI via Zenodo (0.6.7). 2021; https://doi.org/10.5281/zenodo.5127899.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.
Article CAS PubMed PubMed Central Google Scholar
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008.
Article PubMed PubMed Central Google Scholar
Tay RE, Olawoyin O, Cejas P, Xie Y, Meyer CA, Ito Y, et al. Hdac3 is an epigenetic inhibitor of the cytotoxicity program in CD8 T cells. J Exp Med. 2020;217(7):e20191453.
Article CAS PubMed PubMed Central Google Scholar
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next-generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–165.
Article PubMed PubMed Central Google Scholar
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integr Genomics Viewer Nat Biotechnol. 2011;29(1):24–6.
Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. The UCSC table browser data retrieval tool. Nucleic Acids Res. 2004;32:D493–496.
Article CAS PubMed PubMed Central Google Scholar
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.
Article PubMed PubMed Central Google Scholar
Stark R, Brown G. DiffBind: differential binding analysis of ChIP-Seq peak data. 2011;http://bioconductor.org/packages/release/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf.
Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, et al. Differential oestrogen receptor binding is associated with clinical outcomes in breast cancer. Nature. 2012;481(7381):389–93.
Article CAS PubMed PubMed Central Google Scholar
Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015;31(14):2382–3.
Article CAS PubMed Google Scholar
Zhu LJ, Gazin C, Lawson ND, Pagès H, Lin SM, Lapointe DS, et al. ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinform. 2010;11(1):237.
Ernst J, Kellis M. Chromatin state discovery and genome annotation with ChromHMM. Nat Protoc. 2017;12(12):2478–92.
留言 (0)