Plasschaert RN, Bartolomei MS. Genomic imprinting in development, growth, behavior and stem cells. Development. 2014;141(9):1805–13.
Article CAS PubMed PubMed Central Google Scholar
Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC, Erice Imprinting G. Genomic imprinting and physiological processes in mammals. Cell. 2019;176(5):952–65.
Article CAS PubMed Google Scholar
Barlow DP, Bartolomei MS. Genomic imprinting in mammals. Cold Spring Harbor Perspect Biol. 2014;6(2):a018382.
Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019;20(4):235–48.
Article CAS PubMed Google Scholar
Hanna CW, Kelsey G. The specification of imprints in mammals. Heredity (Edinb). 2014;113(2):176–83.
Article CAS PubMed Google Scholar
Farhadova S, Gomez-Velazquez M, Feil R. Stability and lability of parental methylation imprints in development and disease. Genes. 2019;10(12):999.
Article CAS PubMed PubMed Central Google Scholar
Tremblay KD, Saam JR, Ingram RS, Tilghman SM, Bartolomei MS. A paternal-specific methylation imprint marks the alleles of the mouse H19 gene. Nat Genet. 1995;9(4):407–13.
Article CAS PubMed Google Scholar
Tremblay KD, Duran KL, Bartolomei MS. A 5ʹ 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol Cell Biol. 1997;17(8):4322–9.
Article CAS PubMed PubMed Central Google Scholar
Olek A, Walter J. The pre-implantation ontogeny of the H19 methylation imprint. Nat Genet. 1997;17(3):275–6.
Article CAS PubMed Google Scholar
Chang S, Bartolomei MS. Modeling human epigenetic disorders in mice: beckwith-wiedemann syndrome and silver-russell syndrome. Dis Model Mech. 2020. https://doi.org/10.1242/dmm.044123.
Article PubMed PubMed Central Google Scholar
Tanimoto K, Shimotsuma M, Matsuzaki H, Omori A, Bungert J, Engel JD, Fukamizu A. Genomic imprinting recapitulated in the human beta-globin locus. Proc Natl Acad Sci U S A. 2005;102(29):10250–5.
Article CAS PubMed PubMed Central Google Scholar
Matsuzaki H, Okamura E, Takahashi T, Ushiki A, Nakamura T, Nakano T, Hata K, Fukamizu A, Tanimoto K. De novo DNA methylation through the 5’-segment of the H19 ICR maintains its imprint during early embryogenesis. Development. 2015;142(22):3833–44.
Okamura E, Matsuzaki H, Sakaguchi R, Takahashi T, Fukamizu A, Tanimoto K. The H19 imprinting control region mediates preimplantation imprinted methylation of nearby sequences in yeast artificial chromosome transgenic mice. Mol Cell Biol. 2013;33(4):858–71.
Article CAS PubMed PubMed Central Google Scholar
Matsuzaki H, Okamura E, Kuramochi D, Ushiki A, Hirakawa K, Fukamizu A, Tanimoto K. Synthetic DNA fragments bearing ICR cis elements become differentially methylated and recapitulate genomic imprinting in transgenic mice. Epigenetics Chromatin. 2018;11(1):36.
Article PubMed PubMed Central Google Scholar
Matsuzaki H, Kuramochi D, Okamura E, Hirakawa K, Ushiki A, Tanimoto K. Recapitulation of gametic DNA methylation and its post-fertilization maintenance with reassembled DNA elements at the mouse Igf2/H19 locus. Epigenetics Chromatin. 2020;13(1):2.
Article CAS PubMed PubMed Central Google Scholar
Hirakawa K, Matsuzaki H, Tanimoto K. Transient establishment of imprinted DNA methylation of transgenic human IC1 sequence in mouse during the preimplantation period. Hum Mol Genet. 2021;29(22):3646–61.
Matsuzaki H, Sugihara S, Tanimoto K. The transgenic IG-DMR sequence of the mouse Dlk1-Dio3 domain acquired imprinted DNA methylation during the post-fertilization period. Epigenetics Chromatin. 2023;16(1):7.
Article CAS PubMed PubMed Central Google Scholar
Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell. 2008;15(4):547–57.
Article CAS PubMed PubMed Central Google Scholar
Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, Baglivo I, Pedone PV, Grimaldi G, Riccio A, et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell. 2011;44(3):361–72.
Article CAS PubMed PubMed Central Google Scholar
Takahashi N, Gray D, Strogantsev R, Noon A, Delahaye C, Skarnes WC, Tate PH, Ferguson-Smith AC. ZFP57 and the targeted maintenance of postfertilization genomic imprints. Cold Spring Harb Symp Quant Biol. 2015;80:177–87.
Takahashi N, Coluccio A, Thorball CW, Planet E, Shi H, Offner S, Turelli P, Imbeault M, Ferguson-Smith AC, Trono D. ZNF445 is a primary regulator of genomic imprinting. Genes Dev. 2019;33(1–2):49–54.
Article CAS PubMed PubMed Central Google Scholar
Matsuzaki H, Takahashi T, Kuramochi D, Hirakawa K, Tanimoto K. Five nucleotides found in RCTG motifs are essential for post-fertilization methylation imprinting of the H19 ICR in YAC transgenic mice. Nucleic Acids Res. 2023;51(14):7236–53.
Article CAS PubMed PubMed Central Google Scholar
Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D, Cerchietti L, Meng FG, Augenlicht LH, Mariadason JM, et al. Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol. 2006;26(1):199–208.
Article CAS PubMed PubMed Central Google Scholar
Pierre CC, Hercules SM, Yates C, Daniel JM. Dancing from bottoms up—roles of the POZ-ZF transcription factor kaiso in cancer. Biochim Biophys Acta Rev Cancer. 2019;1871(1):64–74.
Article CAS PubMed Google Scholar
Hodges AJ, Hudson NO, Buck-Koehntop BA. Cys(2)His(2) zinc finger methyl-CpG binding proteins: getting a handle on methylated DNA. J Mol Biol. 2020;432(6):1640–60.
Article CAS PubMed Google Scholar
Prokhortchouk A, Hendrich B, Jorgensen H, Ruzov A, Wilm M, Georgiev G, Bird A, Prokhortchouk E. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001;15(13):1613–8.
Article CAS PubMed PubMed Central Google Scholar
Daniel JM, Spring CM, Crawford HC, Reynolds AB, Baig A. The p120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res. 2002;30(13):2911–9.
Article CAS PubMed PubMed Central Google Scholar
Lopes EC, Valls E, Figueroa ME, Mazur A, Meng FG, Chiosis G, Laird PW, Schreiber-Agus N, Greally JM, Prokhortchouk E, et al. Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines. Cancer Res. 2008;68(18):7258–63.
留言 (0)