Exosomal miR-129 and miR-342 derived from intermittent hypoxia-stimulated vascular smooth muscle cells inhibit the eIF2α/ATF4 axis from preventing calcified aortic valvular disease

Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA (2010) NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci 30(8):2967–2978. https://doi.org/10.1523/JNEUROSCI.5552-09.2010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asano K (2021) Origin of translational control by eIF2alpha phosphorylation: insights from genome-wide translational profiling studies in fission yeast. Curr Genet 67(3):359–368. https://doi.org/10.1007/s00294-020-01149-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Balogh E, Toth A, Mehes G, Trencsenyi G, Paragh G, Jeney V (2019) Hypoxia triggers osteochondrogenic differentiation of vascular smooth muscle cells in an hif-1 (hypoxia-inducible factor 1)-dependent and reactive oxygen species-dependent manner. Arterioscler Thromb Vasc Biol 39(6):1088–1099. https://doi.org/10.1161/ATVBAHA.119.312509

Article  CAS  PubMed  Google Scholar 

Barile L, Vassalli G (2017) Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther 174:63–78. https://doi.org/10.1016/j.pharmthera.2017.02.020

Article  CAS  PubMed  Google Scholar 

Barile L, Moccetti T, Marban E, Vassalli G (2017) Roles of exosomes in cardioprotection. Eur Heart J 38(18):1372–1379. https://doi.org/10.1093/eurheartj/ehw304

Article  CAS  PubMed  Google Scholar 

Beckmann E, Grau JB, Sainger R, Poggio P, Ferrari G (2010) Insights into the use of biomarkers in calcific aortic valve disease. J Heart Valve Dis 19(4):441–452

PubMed  PubMed Central  Google Scholar 

Blaser MC, Aikawa E (2018) Roles and regulation of extracellular vesicles in cardiovascular mineral metabolism. Front Cardiovasc Med 5:187. https://doi.org/10.3389/fcvm.2018.00187

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho KI, Sakuma I, Sohn IS, Jo SH, Koh KK (2018) Inflammatory and metabolic mechanisms underlying the calcific aortic valve disease. Atherosclerosis 277:60–65. https://doi.org/10.1016/j.atherosclerosis.2018.08.029

Article  CAS  PubMed  Google Scholar 

Dickhout JG, Carlisle RE, Jerome DE et al (2012) Integrated stress response modulates cellular redox state via induction of cystathionine gamma-lyase: cross-talk between integrated stress response and thiol metabolism. J Biol Chem 287(10):7603–7614. https://doi.org/10.1074/jbc.M111.304576

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fu Z, Li F, Jia L et al (2019) Histone deacetylase 6 reduction promotes aortic valve calcification via an endoplasmic reticulum stress-mediated osteogenic pathway. J Thorac Cardiovasc Surg 158(2):408–417. https://doi.org/10.1016/j.jtcvs.2018.10.136

Article  CAS  PubMed  Google Scholar 

Geng J, Xu H, Fu W et al (2020) Rosuvastatin protects against endothelial cell apoptosis in vitro and alleviates atherosclerosis in ApoE(-/-) mice by suppressing endoplasmic reticulum stress. Exp Ther Med 20(1):550–560. https://doi.org/10.3892/etm.2020.8733

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geng Z, Xu F, Zhang Y (2016) MiR-129-5p-mediated Beclin-1 suppression inhibits endothelial cell autophagy in atherosclerosis. Am J Transl Res 8(4):1886–1894

CAS  PubMed  PubMed Central  Google Scholar 

Goody PR, Hosen MR, Christmann D et al (2020) Aortic valve stenosis: from basic mechanisms to novel therapeutic targets. Arterioscler Thromb Vasc Biol 40(4):885–900. https://doi.org/10.1161/ATVBAHA.119.313067

Article  CAS  PubMed  Google Scholar 

Heo J, Yang HC, Rhee WJ, Kang H (2020) Vascular smooth muscle cell-derived exosomal micrornas regulate endothelial cell migration under pdgf stimulation. Cells 9(3):33. https://doi.org/10.3390/cells9030639

Article  CAS  Google Scholar 

Huang P, Peslak SA, Lan X et al (2020) The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression. Blood 135(24):2121–2132. https://doi.org/10.1182/blood.2020005301

Article  PubMed  PubMed Central  Google Scholar 

Hutcheson JD, Aikawa E, Merryman WD (2014) Potential drug targets for calcific aortic valve disease. Nat Rev Cardiol 11(4):218–231. https://doi.org/10.1038/nrcardio.2014.1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jung YY, Kim KC, Park MH et al (2018) Atherosclerosis is exacerbated by chitinase-3-like-1 in amyloid precursor protein transgenic mice. Theranostics 8(3):749–766. https://doi.org/10.7150/thno.20183

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kapustin AN, Shanahan CM (2016) Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation. J Physiol 594(11):2905–2914. https://doi.org/10.1113/JP271340

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kyotani Y, Takasawa S, Yoshizumi M (2019) Proliferative pathways of vascular smooth muscle cells in response to intermittent hypoxia. Int J Mol Sci 20(11):2706. https://doi.org/10.3390/ijms20112706

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latif N, Sarathchandra P, Chester AH, Yacoub MH (2015) Expression of smooth muscle cell markers and co-activators in calcified aortic valves. Eur Heart J 36(21):1335–1345. https://doi.org/10.1093/eurheartj/eht547

Article  CAS  PubMed  Google Scholar 

Li J, Xue H, Li T et al (2019) Exosomes derived from mesenchymal stem cells attenuate the progression of atherosclerosis in ApoE(-/-) mice via miR-let7 mediated infiltration and polarization of M2 macrophage. Biochem Biophys Res Commun 510(4):565–572. https://doi.org/10.1016/j.bbrc.2019.02.005

Article  CAS  PubMed  Google Scholar 

Li N, Bai Y, Zhou G et al (2020) miR-214 attenuates aortic valve calcification by regulating osteogenic differentiation of valvular interstitial cells. Mol Ther Nucleic Acids 22:971–980. https://doi.org/10.1016/j.omtn.2020.10.016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Masuda M, Miyazaki-Anzai S, Levi M, Ting TC, Miyazaki M (2013) PERK-eIF2alpha-ATF4-CHOP signaling contributes to TNFalpha-induced vascular calcification. J Am Heart Assoc 2(5):e000238. https://doi.org/10.1161/JAHA.113.000238

Article  CAS  PubMed  PubMed Central  Google Scholar 

Majumdar U, Manivannan S, Basu M et al (2021) Nitric oxide prevents aortic valve calcification by S-nitrosylation of USP9X to activate NOTCH signaling. Sci Adv 7(6):304. https://doi.org/10.1126/sciadv.abe3706

Article  CAS  Google Scholar 

Masuda M, Ting TC, Levi M, Saunders SJ, Miyazaki-Anzai S, Miyazaki M (2012) Activating transcription factor 4 regulates stearate-induced vascular calcification. J Lipid Res 53(8):1543–1552. https://doi.org/10.1194/jlr.M025981

Article  CAS  PubMed  PubMed Central  Google Scholar 

Navarrete-Opazo A, Mitchell GS (2014) Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol 307(10):R1181-1197. https://doi.org/10.1152/ajpregu.00208.2014

Article  CAS  PubMed  PubMed Central  Google Scholar 

Onat UI, Yildirim AD, Tufanli O et al (2019) Intercepting the lipid-induced integrated stress response reduces atherosclerosis. J Am Coll Cardiol 73(10):1149–1169. https://doi.org/10.1016/j.jacc.2018.12.055

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan W, Liang J, Tang H et al (2020) Differentially expressed microRNA profiles in exosomes from vascular smooth muscle cells associated with coronary artery calcification. Int J Biochem Cell Biol 118:105645. https://doi.org/10.1016/j.biocel.2019.105645

Article  CAS  PubMed  Google Scholar 

Peeters F, Meex SJR, Dweck MR et al (2018) Calcific aortic valve stenosis: hard disease in the heart: a biomolecular approach towards diagnosis and treatment. Eur Heart J 39(28):2618–2624. https://doi.org/10.1093/eurheartj/ehx653

Article  CAS  PubMed  Google Scholar 

Peltonen T, Ohukainen P, Ruskoaho H, Rysa J (2017) Targeting vasoactive peptides for managing calcific aortic valve disease. Ann Med 49(1):63–74. https://doi.org/10.1080/07853890.2016.1231933

Article  CAS  PubMed  Google Scholar 

Qiu H, Shi S, Wang S, Peng H, Ding SJ, Wang L (2018) Proteomic profiling exosomes from vascular smooth muscle cell. Proteomics Clin Appl 12(5):e1700097. https://doi.org/10.1002/prca.201700097

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raddatz MA, Madhur MS, Merryman WD (2019) Adaptive immune cells in calcific aortic valve disease. Am J Physiol Heart Circ Physiol 317(1):H141–H155. https://doi.org/10.1152/ajpheart.00100.2019

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif