GREM1 signaling in cancer: tumor promotor and suppressor?

Biffi G, Spielman B, Hao Y al (2019) IL1-Induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal. Adenocarcinoma. Cancer Discovery 9(2):282–301. https://doi.org/10.1158/2159-8290.CD-18-0710

Article  Google Scholar 

Chang SH, Mori D, Kobayashi H et al (2019) Excessive mechanical loading promotes osteoarthritis through the gremlin-1–NF-κB pathway. Nat Commun 10(1):1–5. https://doi.org/10.1038/s41467-019-09491-5

Article  CAS  Google Scholar 

Chen B, Blair DG, Plisov S et al (2004) Cutting Edge: bone morphogenetic protein antagonists. J Immunol 173:5914–5917. https://doi.org/10.4049/jimmunol.173.10.5914

Article  CAS  Google Scholar 

Chen M, Yeh YC, Shyr YM et al (2013) Expression of gremlin 1 correlates with increased angiogenesis and progression-free survival in patients with pancreatic neuroendocrine tumors. J Gastroenterol 48(1):101–108. https://doi.org/10.1007/s00535-012-0614-z

Article  CAS  Google Scholar 

Cheng C, Wang J, Xu P, Zhang K et al (2022) Gremlin1 is a therapeutically targetable FGFR1 ligand that regulates lineage plasticity and castration resistance in prostate cancer. Nat Cancer 3(5):565–580. https://doi.org/10.1038/s43018-022-00380-3

Article  CAS  Google Scholar 

Chiodelli P, Mitola S, Ravelli C et al (2011) Heparan sulfate proteoglycans mediate the angiogenic activity of the vascular endothelial growth factor receptor-2 agonist gremlin. Arterioscler Thromb Vasc Biol 31(12):116–127. https://doi.org/10.1161/ATVBAHA.111.235184

Article  CAS  Google Scholar 

Ciuclan L, Sheppard K, Dong L et al (2013) Treatment with anti-gremlin 1 antibody ameliorates chronic hypoxia/SU5416-induced pulmonary arterial hypertension in mice. Am J Pathol 183(5):1461–1473. https://doi.org/10.1016/j.ajpath.2013.07.017

Article  CAS  Google Scholar 

Clark KC, Hewett DR, Panagopoulos V et al (2020) Targeted disruption of bone marrow stromal cell-derived Gremlin1 limits multiple myeloma disease progression in vivo. Cancers (Basel) 12(8):2149. https://doi.org/10.3390/cancers12082149

Corsini M, Moroni E, Ravelli C, Andrés G, Grillo E, Ali IH, Brazil DP, Presta M, Mitola S (2014) Cyclic adenosine monophosphate-response element-binding protein mediates the proangiogenic or proinflammatory activity of gremlin. Arterioscler Thromb Vasc Biol 34(1):136–145. https://doi.org/10.1161/ATVBAHA.113.302517

Costa A, Kieffer Y, Scholer-Dahirel A et al (2018) Fibroblast heterogeneity and immunosuppressive environment in human breast Cancer. Cancer Cell 33(3):463–479e10. https://doi.org/10.1016/j.ccell.2018.01.011

Article  CAS  Google Scholar 

Cox CB, Storm EE, Kapoor VN et al (2021) IL-1R1-dependent signaling coordinates epithelial regeneration in response to intestinal damage. Sci Immuno 6(59). https://doi.org/10.1126/sciimmunol.abe8856

Davis H et al (2015) Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside of the crypt base stem cell niche. Hayley’ 21(1):62–70. https://doi.org/10.1038/nm.3750

Article  CAS  Google Scholar 

Deckers MM, van Bezooijen RL, van der Horst G et al (2002) Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A.‘ Endocrinology 143(4):1545–1553. https://doi.org/10.1210/endo.143.4.8719

Dickinson RE, Dallol A, Bieche I et al (2004) Epigenetic inactivation of SLIT3 and SLIT1 genes in human cancers. Br J Cancer 91(12):2071–2078. https://doi.org/10.1038/sj.bjc.6602222

Article  CAS  Google Scholar 

Dolan V, Murphy M, Sadlier D et al (2005) Expression of gremlin, a bone morphogenetic protein antagonist, in human diabetic nephropathy. Am J Kidney Dis 45(6):1034–1039. https://doi.org/10.1053/j.ajkd.2005.03.014

Dutton LR, O’Neill CL, Medina RJ et al (2019a) No evidence of Gremlin1-mediated activation of VEGFR2 signaling in endothelial cells. J Biol Chem 29(48):18041–18045. 10.1074/jbc.AC119.010148

Article  Google Scholar 

Dutton LR, Hoare OP, McCorry AMB et al (2019b) Fibroblast-derived Gremlin1 localises to epithelial cells at the base of the intestinal crypt. Oncotarget 10(45):4630–4639. 10.18632/oncotarget.27050

Article  Google Scholar 

Elemam NM, Malek AI, Mahmoud EE et al (2022) Insights into the role of Gremlin-1, a bone morphogenic protein antagonist, in Cancer initiation and progression. 10(2):1–15. https://doi.org/10.3390/biomedicines10020301

Elyada E, Bolisetty M, Laise P et al (2019) Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting. Cancer-associated Fibroblasts 9(8):1102–1123. https://doi.org/10.1158/2159-8290.CD-19-0094

Article  CAS  Google Scholar 

Gazzerro E, Pereira RC, Jorgetti V et al (2005) Skeletal overexpression of gremlin impairs bone formation and causes osteopenia. 146(2):655–665. https://doi.org/10.1210/en.2004-0766

Gazzerro E, Smerdel-Ramoya A, Zanotti S et al (2007) Conditional deletion of gremlin causes a transient increase in bone formation and bone mass. J Biol Chem 282(43):31549–31557. https://doi.org/10.1074/jbc.M701317200

Article  CAS  Google Scholar 

Gomez-Puerto MC, Iyengar PV, García de Vinuesa A et al (2019) Bone morphogenetic protein receptor signal transduction in human disease. J Pathol 247(1):9–20. https://doi.org/10.1002/path.5170

Article  CAS  Google Scholar 

Gooding S, Leedham SJ (2020) Gremlin 1 — small protein, big impact: the multiorgan consequences of disrupted BMP antagonism. J Pathol 251(4):349–352. https://doi.org/10.1002/path.5479

Article  CAS  Google Scholar 

Goto N, Goto S, Imada S, Hosseini S et al (2022) Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury. Cell Stem Cell 29(8):1246–1261e6. https://doi.org/10.1016/j.stem.2022.06.013

Article  CAS  Google Scholar 

Goumans MJ, Zwijsen A, Ten Dijke P et al (2018) Bone morphogenetic proteins in vascular homeostasis and disease. Cold Spring Harb Perspect Biol 10(2):1–10. https://doi.org/10.1101/cshperspect.a031989

Grillo E, Ravelli C, Corsini M et al (2016) Monomeric gremlin is a novel vascular endothelial growth factor receptor-2 antagonist. Oncotarget 7(23):35353–35368. https://doi.org/10.18632/oncotarget.9286

Article  Google Scholar 

Gu Q, Luo Y, Chen C et al (2019) GREM1 overexpression inhibits proliferation, migration and angiogenesis of osteosarcoma. Experimental Cell Research 384(1):111619. https://doi.org/10.1016/j.yexcr.2019.111619

Article  CAS  Google Scholar 

Han EJ, Yoo SA, Kim GM et al (2016) GREM1 is a key regulator of synoviocyte hyperplasia and invasiveness. J Rheumatol 43(3):474–485. https://doi.org/10.3899/jrheum.150523

Article  Google Scholar 

Honma R, Sakamoto N, Ishikawa A et al (2018) Clinicopathological and prognostic significance of epithelial gremlin1 expression in gastric cancer. Anticancer Res 38(3):1419–1425. https://doi.org/10.21873/anticanres.12366

Article  CAS  Google Scholar 

Jaeger E, Leedham S, Lewis A et al (2012) Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nat Genet 44(6):699–703. https://doi.org/10.1038/ng.2263

Article  CAS  Google Scholar 

Jang BG, Kim HS, Chang WY et al (2017) Prognostic significance of stromal GREM1 expression in colorectal cancer. Human Pathology 62:56–65. https://doi.org/10.1016/j.humpath.2016.12.018

Jiang Z, Liang G, Xiao Y et al (2019) Targeting the SLIT/ROBO pathway in tumor progression: molecular mechanisms and therapeutic perspectives. Therapeutic Adv Vaccines 11(6):1–14. https://doi.org/10.1177/1758835919855238

Article  CAS  Google Scholar 

Kapoor VN, Müller S, Keerthivasan S et al (2021) Gremlin 1 + fibroblastic niche maintains dendritic cell homeostasis in lymphoid tissues. Nat Immunol Springer US 22(May). https://doi.org/10.1038/s41590-021-00920-6

Khokha MK, Hsu D, Brunet LJ et al (2003) Gremlin is the BMP antagonist required for maintenance of shh and fgf signals during limb patterning. Nat Genet 34(3):303–307. https://doi.org/10.1038/ng1178

Article  CAS  Google Scholar 

Kim M, Yoon S, Lee S et al (2012) Gremlin-1 induces BMP-independent tumor cell proliferation, migration, and invasion. PLoS ONE 7(4). https://doi.org/10.1371/journal.pone.0035100

Kim HS, Shin MS, Cheon MS et al (2017) GREM1 is expressed in the cancer-associated myofibroblasts of basal cell carcinomas. PLoS ONE 12(3):1–13. https://doi.org/10.1371/journal.pone.0174565

Article  CAS  Google Scholar 

Kim NH, Sung NJ, Youn HS et al (2020) Gremlin-1 activates Akt/STAT3 signaling, which increases the glycolysis rate in breast cancer cells. Biochem Biophys Res Commun 533(4):1378–1384. https://doi.org/10.1016/j.bbrc.2020.10.025

Article  CAS  Google Scholar 

Kišonaitė M, Wang X, Hyvönen M (2016) Structure of Gremlin-1 and analysis of its interaction with BMP-2. Biochem J 473(11):1593–1604. https://doi.org/10.1042/BCJ20160254

Article  CAS  Google Scholar 

Kobayashi H, Gieniec KA, Wright JA et al (2021) The balance of stromal BMP signaling mediated by GREM1 and ISLR drives colorectal carcinogenesis. Gastroenterology 160(4):1224–1239e30. https://doi.org/10.1053/j.gastro.2020.11.011

Article  CAS  Google Scholar 

Koppens MAJ, Davis H, Valbuena GN et al (2021) Bone morphogenetic protein pathway antagonism by Grem1 regulates epithelial cell fate. in Intestinal Regeneration’ 161(1):239–254. https://doi.org/10.1053/j.gastro.2021.03.052.Bone

Article  CAS  Google Scholar 

Lan L, Evan T, Li H et al (2022) GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nat Springer US 607(7917):163–168. https://doi.org/10.1038/s41586-022-04888-7

Article  CAS  Google Scholar 

Lavoz C, Alique M, Rodrigues-Diez R et al (2015) Gremlin regulates renal inflammation via the vascular endothelial growth factor receptor 2 pathway. J Pathol 236(4):407–420. https://doi.org/10.1002/path.4537

Article  CAS  Google Scholar 

Lavoz C, Poveda J, Marquez-Exposito L et al (2018) Gremlin activates the notch pathway linked to renal inflammation. Clin Sci 132(11):1097–1115. https://doi.org/10.1042/CS20171553

Article  CAS  Google Scholar 

Lenox CE, Bauer JE (2013) Potential adverse effects of omega-3 fatty acids in dogs and cats. J Vet Intern Med 27(2):217–226. https://doi.org/10.1111/jvim.12033

Article  CAS  Google Scholar 

Li CJ, Madhu V, Balian G et al (2015) Cross-Talk between VEGF and BMP-6 pathways accelerates osteogenic differentiation of human adipose-derived stem cells. J Cell Physiol 230(11):2671–2682. https://doi.org/10.1002/jcp.24983

Article  CAS  Google Scholar 

Li D, Yuan D, Shen H et al (2019) Gremlin-1: an endogenous BMP antagonist induces epithelial-mesenchymal transition and interferes with redifferentiation in fetal RPE cells with repeated wounds. Mol Vis 25(September 2018):625–635

CAS  Google Scholar 

Li S, Shi J, Tang H (2022) Animal models of drug-induced pulmonary fibrosis: an overview of molecular mechanisms and characteristics. Cell Biology and Toxicology Springer Netherlands 38(5):699–723. https://doi.org/10.1007/s10565-021-09676-z

Article  CAS  Google Scholar 

Liu Y, Li Y, Hou R et al (2019) Knockdown GREM1 suppresses cell growth, angiogenesis, and epithelial - mesenchymal transition in colon cancer. J Cell Biochemestry 120(4):5583–5596. https://doi.org/10.1002/jcb.27842

留言 (0)

沒有登入
gif