Deciphering Stromal Changes between Metastatic and Non-metastatic Canine Mammary Carcinomas

Hanahan D, Coussens LM. Accessories to the Crime: Functions of Cells Recruited to the Tumor Microenvironment. Cancer Cell. Cell Press; 2012. p. 309–22.

Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. American Association for Cancer Research Inc.; 2022. pp. 31–46.

Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer. Elsevier BV; 2022.

Schiffman JD, Breen M. Comparative oncology: What dogs and other species can teach us about humans with cancer. Philosophical Transactions of the Royal Society B: Biological Sciences. Royal Society of London; 2015.

Kim TM, Yang IS, Seung BJ, Lee S, Kim D, Ha YJ et al. Cross-species oncogenic signatures of breast cancer in canine mammary tumors. Nat Commun Nature Research; 2020;11.

Liu D, Xiong H, Ellis AE, Northrup NC, Rodriguez CO, O’Regan RM, et al. Molecular homology and difference between spontaneous canine mammary cancer and human breast cancer. Cancer Res American Association for Cancer Research Inc. 2014;74:5045–56.

CAS  Google Scholar 

Salas Y, Márquez A, Diaz D, Romero L. Epidemiological study of mammary tumors in female dogs diagnosed during the period 2002–2012: a growing animal health problem. PLoS One Public Library of Science; 2015;10.

Grüntzig K, Graf R, Boo G, Guscetti F, Hässig M, Axhausen KW et al. Swiss Canine Cancer Registry 1955–2008: Occurrence of the Most Common Tumour Diagnoses and Influence of Age, Breed, Body Size, Sex and Neutering Status on Tumour Development. J Comp Pathol. W.B. Saunders Ltd; 2016;155:156–70.

Grüntzig K, Graf R, Hässig M, Welle M, Meier D, Lott G, The Swiss canine cancer registry: A retrospective study on the occurrence of tumours in dogs in Switzerland from 1955 to 2008. J Comp, Pathol et al. W.B. Saunders Ltd; 2015;152:161–71.

Ettlin J, Clementi E, Amini P, Malbon A, Markkanen E. Analysis of gene expression signatures in cancer-associated stroma from canine mammary tumours reveals molecular homology to human breast carcinomas. Int J Mol Sci MDPI AG; 2017;18.

Amini P, Nassiri S, Ettlin J, Malbon A, Markkanen E. Next-generation RNA sequencing of FFPE subsections reveals highly conserved stromal reprogramming between canine and human mammary carcinoma. DMM Disease Models and Mechanisms. Company of Biologists Ltd; 2019. p. 12.

Amini P, Nassiri S, Malbon A, Markkanen E. Differential stromal reprogramming in benign and malignant naturally occurring canine mammary tumours identifies disease-modulating stromal components. Sci Rep Nature Research; 2020;10.

Pöschel A, Beebe E, Kunz L, Amini P, Guscetti F, Malbon A, et al. Identification of disease-promoting stromal components by comparative proteomic and transcriptomic profiling of canine mammary tumors using laser-capture microdissected FFPE tissue. Neoplasia (United States). Volume 23. Elsevier Inc.; 2021. pp. 400–12.

Markkanen E. Know Thy Model: charting Molecular Homology in Stromal Reprogramming between Canine and Human Mammary Tumors. Front Cell Dev Biol. Frontiers Media S.A.; 2019.

Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. Chongqing yi ke da xue, di 2 lin chuang xue yuan Bing du xing gan yan yan jiu suo; 2018. p. 77–106.

Goldschmidt MH, Peña L, Rasotto R, Zappulli V. Classification and grading of canine mammary tumors. Vet Pathol. 2011;48:117–31.

Article  CAS  PubMed  Google Scholar 

Yoshimura H, Nakahira R, Kishimoto TE, Michishita M, Ohkusu-Tsukada K, Takahashi K. Differences in indicators of Malignancy between Luminal epithelial cell type and myoepithelial cell type of simple solid carcinoma in the Canine Mammary Gland. Vet pathol. Volume 51. SAGE Publications Inc.; 2014. pp. 1090–5.

Burrai GP, Baldassarre V, Brunetti B, Iussich S, Maniscalco L, Mariotti F, et al. Canine and feline in situ mammary carcinoma: a comparative review. Vet pathol. SAGE Publications Inc.; 2022. pp. 894–902.

Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res. 2009;11.

Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med. 2008;14:518–27.

Article  CAS  PubMed  Google Scholar 

Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H et al. Molecular characterization of the tumor microenvironment in breast cancer [Internet]. 2004. Available from: http://www.cancercell.org/.

Amini P, Ettlin J, Opitz L, Clementi E, Malbon A, Markkanen E. An optimised protocol for isolation of RNA from small sections of laser-capture microdissected FFPE tissue amenable for next-generation sequencing. BMC Mol Biol. 2017;18.

Guscetti F, Nassiri S, Beebe E, Rito Brandao I, Graf R, Markkanen E. Molecular homology between canine spontaneous oral squamous cell carcinomas and human head-and-neck squamous cell carcinomas reveals disease drivers and therapeutic vulnerabilities. Neoplasia (United States). 2020;22.

Beebe E, Motamed Z, Opitz L, Cheng PF, Levesque MP, Markkanen E et al. Defining the molecular landscape of cancer-associated stroma in cutaneous squamous cell carcinoma. Journal of Investigative Dermatology. Elsevier BV; 2022.

Beebe E, Pöschel A, Kunz L, Wolski W, Motamed Z, Meier D et al. Proteomic profiling of canine fibrosarcoma and adjacent peritumoral tissue. Neoplasia [Internet]. 2023;35:100858. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1476558622000835.

Dewar R, Fadare O, Gilmore H, Gown AM. Best Practices in Diagnostic immunohistochemistry: myoepithelial markers in breast Pathology. Arch Pathol Lab Med. 2011;135:422–9.

Article  PubMed  Google Scholar 

Calon A, Espinet E, Palomo-Ponce S, Tauriello DVF, Iglesias M, Céspedes MV, et al. Dependency of Colorectal Cancer on a TGF-β-Driven program in stromal cells for metastasis initiation. Cancer Cell Cell Press. 2012;22:571–84.

Article  CAS  Google Scholar 

Legrand AJ, Poletto M, Pankova D, Clementi E, Moore J, Castro-Giner F et al. Persistent DNA strand breaks induce a CAF-like phenotype in normal fibroblasts [Internet]. Oncotarget. 2018. Available from: www.impactjournals.com/oncotarget.

Conklin MW, Keely PJ. Why the stroma matters in breast cancer: insights into breast cancer patient outcomes through the examination of stromal biomarkers. Cell Adh Migr. Taylor and Francis Inc.; 2012. pp. 249–60.

Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast Cancer. Cancer Cell Cell Press. 2018;33:463–479e10.

Article  CAS  Google Scholar 

Tata N, Al-Zubeidy B, Kulkarni S. Stromal markers of breast Cancer progression: a review of recent findings. Curr Surg Rep. Springer; 2019.

Monteiro LN, dos Reis DC, Salgado BS, Cassali GD. Clinical significance and prognostic role of tumor-associated macrophages infiltration according to histologic location in canine mammary carcinomas. Res Vet Sci Elsevier B V. 2021;135:329–34.

CAS  Google Scholar 

Carvalho MI, Silva-Carvalho R, Pires I, Prada J, Bianchini R, Jensen-Jarolim E, et al. A comparative Approach of Tumor-Associated inflammation in Mammary Cancer between humans and dogs. Biomed Res Int. Hindawi Publishing Corporation; 2016.

del Alcazar CRG, Alečkovic M, Polyak K. Immune escape during breast tumor progression. Cancer Immunol Res American Association for Cancer Research Inc. 2020;8:422–7.

Google Scholar 

Pantelyushin S, Ranninger E, Guerrera D, Hutter G, Maake C, Markkanen E, et al. Cross-reactivity and functionality of approved human immune checkpoint blockers in dogs. Cancers (Basel) MDPI AG. 2021;13:1–18.

Google Scholar 

Saw PE, Chen J, Song E. Targeting CAFs to overcome anticancer therapeutic resistance. Trends Cancer. Cell Press; 2022. p. 527–55.

Markkanen E, Fischer R, Ledentcova M, Kessler BM, Dianov GL. Cells deficient in base-excision repair reveal cancer hallmarks originating from adjustments to genetic instability. Nucleic Acids Res. Volume 43. Oxford University Press; 2015. pp. 3667–79.

Vargas AC, Reed AEMC, Waddell N, Lane A, Reid LE, Smart CE et al. Gene expression profiling of tumour epithelial and stromal compartments during breast cancer progression. Breast Cancer Res Treat. Springer Science and Business Media, LLC; 2012;135:153–65.

Zheng S, Zou Y, Tang Y, Yang A, Liang JY, Wu L, et al. Landscape of cancer-associated fibroblasts identifies the secreted biglycan as a protumor and immunosuppressive factor in triple-negative breast cancer. Oncoimmunology. Taylor and Francis Ltd.; 2022. p. 11.

Ratajczak-Wielgomas K, Grzegrzolka J, Piotrowska A, Gomulkiewicz A, Witkiewicz W, Dziegiel P. Periostin expression in cancer-associated fibroblasts of invasive ductal breast carcinoma. Oncol Rep Spandidos Publications. 2016;36:2745–54.

Article  CAS  Google Scholar 

Borecka P, Ratajczak-Wielgomas K, Ciaputa R, Kandefer-Gola M, Janus I, Piotrowska A et al. Expression of periostin in cancer-associated fibroblasts in mammary cancer in female dogs. Vivo (Brooklyn). International Institute of Anticancer Research; 2020;34:1017–26.

Takahashi Y, Kuwabara H, Yoneda M, Isogai Z, Tanigawa N, Shibayama Y. Versican G1 and G3 domains are upregulated and latent transforming growth factor-β binding protein-4 is downregulated in breast cancer stroma. Breast Cancer Springer Tokyo. 2012;19:46–53.

Article  Google Scholar 

Klopfleisch R, Lenze D, Hummel M, Gruber AD. Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles. BMC Cancer. 2010;10.

Meng W, Xia Q, Wu L, Chen S, He X, Zhang L et al. Downregulation of TGF-beta receptor types II and III in oral squamous cell carcinoma and oral carcinoma-associated fibroblasts. BMC Cancer. 2011;11.

Lambert KE, Huang H, Mythreye K, Blobe GC. The type III transforming growth factor-β receptor inhibits proliferation, migration, and adhesion in human myeloma cells. Mol Biol Cell. 2011;22:1463–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jovanović B, Pickup MW, Chytil A, Gorska AE, Johnson KC, Moses HL, et al. TβRIII expression in human breast cancer stroma and the role of soluble TβRIII in breast cancer associated fibroblasts. Cancers (Basel). MDPI AG; 2016. p. 8.

Ugolini F, Charafe-Jauffret E, Bardou V-J, Geneix J, Adélaïde J, Labat-Moleur F, et al. WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene. 2001;20:5810–7.

Article  CAS  PubMed  Google Scholar 

Yang Y, Liu HL, Liu YJ. A Novel five-gene signature related to clinical outcome and Immune Microenvironment in breast Cancer. Front Genet Frontiers Media S A; 2022;13.

Tinholt M, Garred, Borgen E, Beraki E, Schlichting E, Kristensen V, et al. Subtype-specific clinical and prognostic relevance of tumor-expressed F5 and regulatory F5 variants in breast cancer: the CoCaV study. Journal of thrombosis and haemostasis. Volume 16. Blackwell Publishing Ltd; 2018. pp. 1347–56.

Lal I, Dittus K, Holmes CE. Platelets, coagulation and fibrinolysis in breast cancer progression. Breast Cancer Res. 2013;15:207.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chefetz I, Sprecher E. Familial tumoral calcinosis and the role of O-glycosylation in the maintenance of phosphate homeostasis. Biochim Biophys Acta Mol Basis Dis. 2009. p. 847–52.

The Human Protein Atlas GALNT3 [Internet]. [cited 2022 Nov 2]. Available from: https://www.proteinatlas.org/ENSG00000115339-GALNT3.

Cid S, Eiro N, González LO, Beridze N, Vazquez J, Vizoso FJ. Expression and clinical significance of Metalloproteases and their inhibitors by endothelial cells from invasive breast carcinomas. Clin breast Cancer. Volume 16. Elsevier Inc.; 2016. pp. e83–91.

Min KW, Kim DH, Do SI, Pyo JS, Kim K, Chae SW et al. Diagnostic and prognostic relevance of mmp-11 expression in the stromal fibroblast-like cells adjacent to invasive ductal carcinoma of the breast. Ann Surg Oncol. 2013;20.

Basset P, Bellocq JP, Wolf C, Stoll I, Hutin P, Limacher JM, et al. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature. 1990;348:699–704.

Article  CAS  PubMed  Google Scholar 

González L, Eiro N, Fernandez-Garcia B, González LO, Dominguez F, Vizoso FJ. Gene expression profile of normal and cancer-associated fibroblasts according to intratumoral inflammatory cells phenotype from breast cancer tissue. Volume 55. Mol Carcinog. John Wiley and Sons Inc.; 2016. pp. 1489–502.

Eiró N, Fernandez-Garcia B, Vázquez J, Delcasar JM, González LO, Vizoso FJ. A phenotype from tumor stroma based on the expression of metalloproteases and their inhibitors, associated with prognosis in breast cancer. Oncoimmunology. Volume 4. Taylor and Francis Inc.; 2015. pp. 1–11.

Schultz S, Bartsch H, Sotlar K, Petat-Dutter K, Bonin M, Kahlert S et al. Progression-specific genes identified in microdissected formalin-fixed and paraffin-embedded tissue containing matched ductal carcinoma in situ and invasive ductal breast cancers. BMC Med Genomics. BioMed Central Ltd.; 2018;11.

Eiro N, Cid S, Fernández B, Fraile M, Cernea A, Sánchez R, et al. MMP11 expression in intratumoral inflammatory cells in breast cancer. Histopathology. Volume 75. Blackwell Publishing Ltd; 2019. pp. 916–30.

Cheng T, Chen P, Chen J, Deng Y, Huang C. Landscape Analysis of Matrix Metalloproteinases unveils key prognostic markers for patients with breast Cancer. Front Genet. Frontiers Media S.A.; 2022. p. 12.

Tan B, Jaulin A, Bund C, Outilaft H, Wendling C, Chenard MP, Cancers, et al. (Basel) MDPI AG. 2020;12:1–19.

CAS  Google Scholar 

Canadas A, França M, Pereira C, Vilaça R, Vilhena H, Tinoco F, et al. Canine mammary tumors: comparison of classification and grading methods in a Survival Study. Vet pathol. Volume 56. SAGE Publications Inc.; 2019. pp. 208–19.

Chang S-C, Chang C-C, Chang T-J, Wong M-L. Prognostic factors associated with survival two years after surgery in dogs with malignant mammary tumors: 79 cases (1998–2002). J Am Vet Med Assoc. 2005;227:1625–9.

Article  PubMed  Google Scholar 

YAMAGAMI T, KOBAYASHI T, TAKAHASHI K. Prognosis for canine malignant mammary tumors based on TNM and histologic classification. J Vet Med Sci. 1996;58:1079–83.

Article  CAS  PubMed  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. Oxford University Press; 2018. pp. i884–90.

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol Nature Publishing Group. 2016;34:525–7.

Article  CAS  Google Scholar 

Robinson MD, McCarthy DJ, Smyth GK, edgeR:. A Bioconductor package for differential expression analysis of digital gene expression data. Volume 26. Bioinformatics: Oxford University Press; 2009. pp. 139–40.

Google Scholar 

留言 (0)

沒有登入
gif