Intramammary Labeling of Epithelial Cell Division

Knight CH, Peaker M. Mammary cell proliferation in mice during pregnancy and lactation in relation to milk yield. Q J Exp Physiol. 1982;67:165–77. https://doi.org/10.1113/expphysiol.1982.sp002610.

Article  CAS  PubMed  Google Scholar 

Knight CH, Peaker M. Mammary development and regression during lactation in goats in relation to milk secretion. Q J Exp Physiol. 1984;69:331–8. https://doi.org/10.1113/expphysiol.1984.sp002809.

Article  CAS  PubMed  Google Scholar 

Capuco AV, Wood DL, Baldwin R, Mcleod K, Paape MJ. Mammary cell number, proliferation, and apoptosis during a bovine lactation: relation to milk production and effect of bST. J Dairy Sci. 2001;84:2177–87. https://doi.org/10.3168/jds.S0022-0302(01)74664-4.

Article  CAS  PubMed  Google Scholar 

Tucker HA, Reece RP. Nucleic acid content of mammary glands of pregnant rats. Exp Biol Med. 1963;112:370–2. https://doi.org/10.3181/00379727-112-28048.

Article  CAS  Google Scholar 

Hovey RC, Auldist DE, Mackenzie DD, McFadden TB. Preparation of an epithelium-free mammary fat pad and subsequent mammogenesis in ewes. J Anim Sci. 2000;78:2177. https://doi.org/10.2527/2000.7882177x.

Article  CAS  PubMed  Google Scholar 

Caron A, Palin MF, Hovey RC, Cohen J, Laforest JP, Farmer C. Effects of sustained hyperprolactinemia in late gestation on mammary development of gilts. Domest Anim Endocrinol. 2020;72:106408. https://doi.org/10.1016/j.domaniend.2019.106408.

Article  CAS  PubMed  Google Scholar 

Meyer MJ, Capuco AV, Ross DA, Lintault LM, Van Amburgh ME. Developmental and nutritional regulation of the prepubertal heifer mammary gland: I. parenchyma and fat pad mass and composition. J Dairy Sci. 2006;89:4289–97. https://doi.org/10.3168/jds.S0022-0302(06)72475-4.

Article  CAS  PubMed  Google Scholar 

Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C, Barnes D, Peters G. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res. 1994;54:1812–7.

CAS  PubMed  Google Scholar 

Talukder AH, Li D-Q, Manavathi B, Kumar R. Serine 28 phosphorylation of NRIF3 confers its co-activator function for estrogen receptor-α transactivation. Oncogene. 2008;27:5233–42. https://doi.org/10.1038/onc.2008.151.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Traurig HH. A radioautographic study of cell proliferation in the mammary gland of the pregnant mouse. Anat Rec. 1967;159:239–47. https://doi.org/10.1002/ar.1091590213.

Article  CAS  PubMed  Google Scholar 

Traurig HH. Cell proliferation in the mammary gland during late pregnancy and lactation. Anat Rec. 1967;157:489–503. https://doi.org/10.1002/ar.1091570309.

Article  Google Scholar 

Horigan KC, Trott JF, Barndollar AS, Scudder JM, Blauwiekel RM, Hovey RC. Hormone interactions confer specific proliferative and histomorphogenic responses in the porcine mammary gland. Domest Anim Endocrinol. 2009;37:124–38. https://doi.org/10.1016/j.domaniend.2009.04.002.

Article  CAS  PubMed  Google Scholar 

Berry SDK, Jobst PM, Ellis SE, Howard RD, Capuco AV, Akers RM. Mammary epithelial proliferation and estrogen receptor α expression in prepubertal heifers: effects of ovariectomy and growth hormone. J Dairy Sci. 2003;86:2098–105. https://doi.org/10.3168/jds.S0022-0302(03)73799-0.

Article  CAS  PubMed  Google Scholar 

Giraddi RR, Shehata M, Gallardo M, Blasco MA, Simons BD, Stingl J. Stem and progenitor cell division kinetics during postnatal mouse mammary gland development. Nat Commun. 2015;6:8487. https://doi.org/10.1038/ncomms9487.

Article  CAS  PubMed  Google Scholar 

Capuco AV. Identification of putative bovine mammary epithelial stem cells by their retention of labeled DNA strands. Exp Biol Med. 2007;232:1381–90. https://doi.org/10.3181/0703-RM-58.

Article  CAS  Google Scholar 

Zeps N, Dawkins HJS, Papadimitriou JM, Redmond SL, Walters M-NI. Detection of a population of long-lived cells in mammary epithelium of the mouse. Cell Tissue Res. 1996;286:525–36. https://doi.org/10.1007/s004410050722.

Article  CAS  PubMed  Google Scholar 

Smith GH. Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development. 2005;132:681–7. https://doi.org/10.1242/dev.01609.

Article  CAS  PubMed  Google Scholar 

Berryhill GE, Brust-Mascher I, Huynh JH, Famula TR, Reardon C, Hovey RC. A convenient method for evaluating epithelial cell proliferation in the whole mammary glands of female mice. Endocrinology. 2016;157:3742–8. https://doi.org/10.1210/en.2016-1480.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capuco AV, Akers RM, Smith JJ. Mammary growth in Holstein cows during the dry period: quantification of nucleic acids and histology. J Dairy Sci. 1997;80:477–87. https://doi.org/10.3168/jds.S0022-0302(97)75960-5.

Article  CAS  PubMed  Google Scholar 

Gratzner HG. Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science. 1982;218:474–5. https://doi.org/10.1126/science.7123245.

Article  CAS  PubMed  Google Scholar 

Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci. 2008;105:2415–20. https://doi.org/10.1073/pnas.0712168105.

Article  PubMed  PubMed Central  Google Scholar 

Rios AC, Fu NY, Jamieson PR, Pal B, Whitehead L, Nicholas KR, Lindeman GJ, Visvader JE. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun. 2016;7:11400. https://doi.org/10.1038/ncomms11400.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blacher S, Gérard C, Gallez A, Foidart J-M, Noël A, Péqueux C. Quantitative assessment of mouse mammary gland morphology using automated digital image processing and TEB detection. Endocrinology. 2016;157:1709–16. https://doi.org/10.1210/en.2015-1601.

Article  CAS  PubMed  Google Scholar 

Sordillo LM, Snider M, Hughes H, Afseth G, Campos M, Babiuk LA. Pathological changes in bovine mammary glands following intramammary infusion of recombinant interleukin-2. J Dairy Sci. 1991;74:4164–74. https://doi.org/10.3168/jds.S0022-0302(91)78611-6.

Article  CAS  PubMed  Google Scholar 

Mackle TR, Dwyer DA, Bauman DE. Intramammary infusion of insulin or long R3 insulin-like growth factor-I did not increase milk protein yield in dairy cows. J Dairy Sci. 2000;83:1740–9. https://doi.org/10.3168/jds.S0022-0302(00)75044-2.

Article  CAS  PubMed  Google Scholar 

Silva LFP, Liesman JS, Etchebarne BE, Weber Nielsen MS, VandeHaar MJ. Short communication: intramammary infusion of IGF-I increases bromodeoxyuridine labeling in mammary epithelial cells of prepubertal heifers. J Dairy Sci. 2005;88:2771–3. https://doi.org/10.3168/jds.S0022-0302(05)72956-8.

Article  CAS  PubMed  Google Scholar 

Cameron M, McKenna SL, MacDonald KA, Dohoo IR, Roy JP, Keefe GP. Evaluation of selective dry cow treatment following on-farm culture: risk of postcalving intramammary infection and clinical mastitis in the subsequent lactation. J Dairy Sci. 2014;97:270–84. https://doi.org/10.3168/jds.2013-7060.

Article  CAS  PubMed  Google Scholar 

Shangraw EM, Rodrigues RO, Witzke MC, Choudhary RK, Zhao F-Q, McFadden TB. Intramammary lipopolysaccharide infusion induces local and systemic effects on milk components in lactating bovine mammary glands. J Dairy Sci. 2020;103:7487–97. https://doi.org/10.3168/jds.2019-18022.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif