State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We?

Evans DGR, van Veen EM, Harkness EF, Brentnall AR, Astley SM, Byers H, et al. Breast Cancer Risk Stratification in Women of Screening Age: Incremental Effects of Adding Mammographic Density, Polygenic Risk, and a Gene Panel. Genet Med. 2022;24:1485–94.

Article  CAS  PubMed  Google Scholar 

Evans DG, Howell SJ, Howell A. New Evidence Confirms That Reproductive Risk Factors Can Be Used to Stratify Breast Cancer Risks: Implications for a New Population Screening Paradigm. Eur J Cancer. 2020;124:204–6.

Article  PubMed  Google Scholar 

Sims AH, Howell A, Howell SJ, Clarke RB. Origins of Breast Cancer Subtypes and Therapeutic Implications. Nat Clin Pract Oncol. 2007;4:516–25.

Article  CAS  PubMed  Google Scholar 

Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated Observation of Breast Tumor Subtypes in Independent Gene Expression Data Sets. Proc Natl Acad Sci U S A. 2003;100:8418–23.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soni A, Ren Z, Hameed O, Chanda D, Morgan CJ, Siegal GP, et al. Breast Cancer Subtypes Predispose the Site of Distant Metastases. Am J Clin Pathol. 2015;143:471–8.

Article  PubMed  Google Scholar 

Mathew A, Rajagopal PS, Villgran V, Sandhu GS, Jankowitz RC, Jacob M, et al. Distinct Pattern of Metastases in Patients with Invasive Lobular Carcinoma of the Breast. Geburtshilfe Frauenheilkd. 2017;77:660–6.

Article  PubMed  PubMed Central  Google Scholar 

Ribatti D, Mangialardi G, Vacca A. Stephen Paget and the “Seed and Soil” Theory of Metastatic Dissemination. Clin Exp Med. 2006;6:145–9.

Article  CAS  PubMed  Google Scholar 

Lin X, Patil S, Gao YG, Qian A. The Bone Extracellular Matrix in Bone Formation and Regeneration. Frontiers in Pharmacology. 2020;11. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2020.00757.  Cited 2023 Dec 6.

Chen FF, Han YJ, Kang YB. Bone Marrow Niches in the Regulation of Bone Metastasis. Br J Cancer. 2021;124:1912–20.

Article  PubMed  PubMed Central  Google Scholar 

Moore KA, Lemischka IR. Stem Cells and Their Niches. Science. 2006;311:1880–5.

Article  CAS  PubMed  Google Scholar 

Glaser DE, Curtis MB, Sariano PA, Rollins ZA, Shergill BS, Anand A, et al. Organ-on-a-chip Model of Vascularized Human Bone Marrow Niches. Biomaterials. 2022;280:121245.

Article  CAS  PubMed  Google Scholar 

Colombo MV, Bersini S, Arrigoni C, Gilardi M, Sansoni V, Ragni E, et al. Engineering the Early Bone Metastatic Niche Through Human Vascularized Immuno Bone Minitissues. Biofabrication. 2021;13:16.

Article  Google Scholar 

Crippa M, Talò G, Lamouline A, Bolis S, Arrigoni C, Bersini S, et al. A Microfluidic Model of Human Vascularized Breast Cancer Metastasis to Bone for the Study of Neutrophil-cancer Cell Interactions. Mater Today Bio. 2022;17:100460.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sieber S, Wirth L, Cavak N, Koenigsmark M, Marx U, Lauster R, et al. Bone Marrow-on-a-chip: Long-term Culture of Human Haematopoietic Stem Cells in a Three-dimensional Microfluidic Environment. J Tissue Eng Regen Med. 2018;12:479–89.

Article  CAS  PubMed  Google Scholar 

Nelson MR, Ghoshal D, Mejías JC, Rubio DF, Keith E, Roy K. A Multi-niche Microvascularized Human Bone Marrow (hBM) On-a-chip Elucidates Key Roles of the Endosteal Niche in HBM Physiology. Biomaterials. 2021;270:120683.

Article  CAS  PubMed  Google Scholar 

Hofer M, Lutolf MP. Engineering Organoids. Nat Rev Mater. 2021;6:402–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, et al. A Living Biobank of Breast Cancer Organoids Captures Disease Heterogeneity. Cell. 2018;172:373-386.e10.

Article  CAS  PubMed  Google Scholar 

Weeber F, Ooft SN, Dijkstra KK, Voest EE. Tumor Organoids as a Pre-clinical Cancer Model for Drug Discovery. Cell Chem Biol. 2017;24:1092–100.

Article  CAS  PubMed  Google Scholar 

Ding K, Chen F, Priedigkeit N, Brown DD, Weiss K, Watters R, et al. Single Cell Heterogeneity and Evolution of Breast Cancer Bone Metastasis and Organoids Reveals Therapeutic Targets for Precision Medicine. Ann Oncol. 2022;33:1085–8.

Article  CAS  PubMed  Google Scholar 

Khan AO, Rodriguez-Romera A, Reyat JS, Olijnik A-A, Colombo M, Wang G, et al. Human Bone Marrow Organoids for Disease Modeling, Discovery, and Validation of Therapeutic Targets in Hematologic Malignancies. Cancer Discov. 2023;13:364–85.

Article  CAS  PubMed  Google Scholar 

Han WJ, El Botty R, Montaudon E, Malaquin L, Deschaseaux F, Espagnolle N, et al. In Vitro Bone Metastasis Dwelling in a 3D Bioengineered Niche. Biomaterials. 2021;269:14.

Article  Google Scholar 

Zhu W, Holmes B, Glazer RI, Zhang LG. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis. Nanomedicine. 2016;12:69–79.

Article  CAS  PubMed  Google Scholar 

Zhu W, Castro NJ, Cui HT, Zhou X, Boualam B, McGrane R, et al. A 3D Printed Nano Bone Matrix for Characterization of Breast Cancer Cell and Osteoblast Interactions. Nanotechnology. 2016;27:9.

Article  Google Scholar 

Cui H, Esworthy T, Zhou X, Hann SY, Glazer RI, Li R, et al. Engineering a Novel 3D Printed Vascularized Tissue Model for Investigating Breast Cancer Metastasis to Bone. Adv Healthcare Mater. 2020;9:1900924.

Article  CAS  Google Scholar 

Langer EM, Allen-Petersen BL, King SM, Kendsersky ND, Turnidge MA, Kuziel GM, et al. Modeling Tumor Phenotypes In Vitro with Three-Dimensional Bioprinting. Cell Rep. 2019;26:608-623.e6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi S, Coonrod S, Estroff L, Fischbach C. Chemical and Physical Properties of Carbonated Hydroxyapatite Affect Breast Cancer Cell Behavior. Acta Biomater. 2015;24:333–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pathi SP, Kowalczewski C, Tadipatri R, Fischbach C. A Novel 3-D Mineralized Tumor Model to Study Breast Cancer Bone Metastasis. Plos One. 2010:10.

Pathi SP, Lin DDW, Dorvee JR, Estroff LA, Fischbach C. Hydroxyapatite Nanoparticle-containing Scaffolds for the Study of Breast Cancer Bone Metastasis. Biomaterials. 2011;32:5112–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bendre MS, Montague DC, Peery T, Akel NS, Gaddy D, Suva LJ. Interleukin-8 Stimulation of Osteoclastogenesis and Bone Resorption is a Mechanism for the Increased Osteolysis of Metastatic Bone Disease. Bone. 2003;33:28–37.

Article  CAS  PubMed  Google Scholar 

Kar S, Molla MS, Katti DR, Katti KS. Tissue-engineered Nanoclay-based 3D in Vitro Breast Cancer Model for Studying Breast Cancer Metastasis to Bone. J Tissue Eng Regen Med. 2019;13:119–30.

Article  CAS  PubMed  Google Scholar 

Kar S, Katti DR, Katti KS. Bone Interface Modulates Drug Resistance in Breast Cancer Bone Metastasis. Colloids Surf B Biointerfaces. 2020;195:10.

Article  Google Scholar 

González Díaz EC, Tai M, Monette CEF, Wu JY, Yang F. Spatially Patterned 3D Model Mimics Key Features of Cancer Metastasis to Bone. Biomaterials. 2023;299:122163.

Article  PubMed  Google Scholar 

James-Bhasin M, Siegel PM, Nazhat SN. A Three-Dimensional Dense Collagen Hydrogel to Model Cancer Cell/Osteoblast Interactions. J Funct Biomater. 2018;9:15.

Article 

留言 (0)

沒有登入
gif