Short-chain fatty acid-mediated epigenetic modulation of inflammatory T cells in vitro

Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DAA. The development and function of regulatory T cells. Cell Mol Life Sci. 2009;66:2603–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Paust S, Cantor H. Regulatory T cells and autoimmune disease. Immunol Rev. 2005;204:195–207.

Article  CAS  PubMed  Google Scholar 

Ohl K, Tenbrock K. Regulatory T cells in systemic lupus erythematosus. Eur J Immunol. 2015;45:344–55.

Article  CAS  PubMed  Google Scholar 

Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell. 2010;140:845–58.

Article  CAS  PubMed  Google Scholar 

Park H, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakaguchi S, et al. Foxp3 + CD25 + CD4 + natural regulatory T cells in dominant self-tolerance and autoimmune disease.

Pan W, et al. MiR-125a targets effector programs to stabilize Treg-mediated immune homeostasis. Nat Commun. 2015;6:7096.

Article  CAS  PubMed  Google Scholar 

Mortaz E, et al. Cancers related to immunodeficiencies: update and perspectives. Front Immunol. 2016;7.

Vial T. Immunosuppressive drugs and cancer. Toxicology. 2003;185:229–40.

Article  CAS  PubMed  Google Scholar 

Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science. 2013;1979(339):166–72.

Article  Google Scholar 

Vinolo MAR, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3:858–76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28:1221–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Johnson WT, Dorn NC, Ogbonna DA, Bottini N, Shah NJ. Lipid‐based regulators of immunity. Bioeng Transl Med. 2022;7.

Dass NB, et al. The relationship between the effects of short-chain fatty acids on intestinal motility in vitro and GPR43 receptor activation. Neurogastroenterol Motil. 2007;19:66–74.

Article  CAS  PubMed  Google Scholar 

the role of butyrate on colonic function. HAMER, H. M. et al. Review article. Aliment Pharmacol Ther. 2007;27:104–19.

Google Scholar 

Luu M, et al. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun. 2019;10.

Park J, et al. Short-chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR-S6K pathway. Mucosal Immunol. 2015;8:80–93.

Article  CAS  PubMed  Google Scholar 

Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene vol. 2007;26:5541–5552. Preprint at https://doi.org/10.1038/sj.onc.1210620.

Wawman RE, Bartlett H, Oo YH. Regulatory T Cell metabolism in the hepatic microenvironment. Front Immunol. 2018;8.

Sakaguchi S, Takahashi T, Hata H, Nomura T, Sakaguchi N. SKG mice, a new genetic model of rheumatoid arthritis. Arthritis Res Ther. 2003;5:10.

Article  PubMed Central  Google Scholar 

Hsieh W-C, et al. PTPN2 links colonic and joint inflammation in experimental autoimmune arthritis. JCI Insight. 2020;5.

Svensson MND, et al. Reduced expression of phosphatase PTPN2 promotes pathogenic conversion of Tregs in autoimmunity. J Clin Investig. 2019;129:1193–210.

Article  PubMed  PubMed Central  Google Scholar 

Gaspar JM. NGmerge: merging paired-end reads via novel empirically-derived models of sequencing errors. BMC Bioinformatics. 2018;19:536.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amemiya HM, Kundaje A, Boyle AP. The ENCODE blacklist: identification of problematic regions of the genome. Sci Rep. 2019;9:9354.

Article  PubMed  PubMed Central  Google Scholar 

Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Y, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

Article  PubMed  PubMed Central  Google Scholar 

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ramírez F, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15.

Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38.

Che J, Okeke C, Hu Z-B, Xu J. DSPE-PEG: a distinctive component in drug delivery system. Curr Pharm Des. 2015;21:1598–605.

Article  CAS  PubMed  Google Scholar 

Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin Rationale for Use in Solid Tumours. Drugs vol. 1997;54.

Oberholzer T, Albrizio M, Luisi PL. Polymerase chain reaction in liposomes. Chem Biol. 1995;2:677–82.

Article  CAS  PubMed  Google Scholar 

Kespohl M, et al. The microbial metabolite butyrate induces expression of Th1- associated factors in cD4+ T cells. Front Immunol. 2017;8.

Ivashkiv LB. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immun. 2018;18:545–558. Preprint at https://doi.org/10.1038/s41577-018-0029-z.

Wood KJ, Sawitzki B. Interferon gamma: a crucial role in the function of induced regulatory T cells in vivo. Trends Immunol. 2006;27.

Ortmann RA, Shevach EM. Susceptibility to collagen-induced arthritis: cytokine-mediated regulation. Clin Immun. 2001;98.

Hirota K, et al. T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis. J Exp Med. 2007;204.

Lee SH, Kwon JY, Kim S-Y, Jung K, Cho M-L. Interferon-gamma regulates inflammatory cell death by targeting necroptosis in experimental autoimmune arthritis. Sci Rep. 2017;7.

Wang Z. Role of IFN-g in induction of Foxp3 and conversion of CD4+CD25- T cells to CD4+ Tregs. J Clin Investig. 2006. https://doi.org/10.1172/JCI25826.

Article  PubMed  PubMed Central  Google Scholar 

Koenecke C, et al. IFN-γ production by allogeneic Foxp3 + regulatory T cells is essential for preventing experimental graft-versus-host disease. J Immun. 2012;189.

Shah S, Dhawan V, Holm R, Nagarsenker MS, Perrie Y. Liposomes: advancements and innovation in the manufacturing process. Adv Drug Deliv Rev. 2020;154–155:102–22.

Article  PubMed  Google Scholar 

Antimisiaris SG, et al. Overcoming barriers by local drug delivery with liposomes. Adv Drug Deliv Rev. 2021;174:53–86.

Article  CAS  PubMed  Google Scholar 

Perez RV, et al. Selective targeting of Kupffer cells with liposomal butyrate augments portal venous transfusion-induced immunosuppression1,2. Transplantation. 1998;65:1294–1298

Broadhurst MJ, et al. IL-22 + CD4 + T cells are associated with therapeutic Trichuris trichiura infection in an ulcerative colitis patient. Sci Transl Med. 2010;2.

He B, et al. The imbalance of Th17/Treg cells is involved in the progression of nonalcoholic fatty liver disease in mice. BMC Immunol. 2017;18.

Kibbie JJ, et al. Butyrate directly decreases human gut lamina propria CD4 T cell function through histone deacetylase (HDAC) inhibition and GPR43 signaling. Immunobiology. 2021;226.

Arpaia N, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504.

Furusawa Y, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504.

Arpaia N, Rudensky AY. Microbial metabolites control gut inflammatory responses. Proc Nat Acad Sci. 2014;111.

Schraml BU, et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature. 2009;460.

Yamazaki S, et al. The AP-1 transcription factor JunB is required for Th17 cell differentiation. Sci Rep. 2017;7.

Pham D, Silberger DJ, Hatton RD, Weaver CT. Batf promotes and stabilizes Th17 cell development by antagonizing the actions of STAT5. J Immun. 2019;202:124.10.

Carr TM, Wheaton JD, Houtz GM, Ciofani M. JunB promotes Th17 cell identity and restrains alternative CD4+ T-cell programs during inflammation. Nat Commun. 2017;8.

留言 (0)

沒有登入
gif