Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, et al. Decay characteristics of HIV-1-infected compartments during combination therapy. Nature. 1997;387(6629):188–91.
Article CAS PubMed Google Scholar
Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4 + T cells. Nat Med. 2003;9(6):727–8.
Article CAS PubMed Google Scholar
Busman-Sahay K, Starke CE, Nekorchuk MD, Estes JD. Eliminating HIV reservoirs for a cure: the issue is in the tissue. Curr Opin HIV AIDS. 2021;16(4):200–8.
Article PubMed PubMed Central Google Scholar
Mehandru S, Poles MA, Tenner-Racz K, Horowitz A, Hurley A, Hogan C, et al. Primary HIV-1 infection is associated with preferential depletion of CD4 + T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med. 2004;200(6):761–70.
Article CAS PubMed PubMed Central Google Scholar
Guy-Grand D, Vassalli P. Gut intraepithelial T lymphocytes. Curr Opin Immunol. 1993;5(2):247–52.
Article CAS PubMed Google Scholar
Mowat AM, Viney JL. The anatomical basis of intestinal immunity. Immunol Rev. 1997;156:145–66.
Article CAS PubMed Google Scholar
Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, et al. Peak SIV replication in resting memory CD4 + T cells depletes gut lamina propria CD4 + T cells. Nature. 2005;434(7037):1148–52.
Article CAS PubMed Google Scholar
Veazey RS, DeMaria M, Chalifoux LV, Shvetz DE, Pauley DR, Knight HL, et al. Gastrointestinal tract as a major site of CD4 + T cell depletion and viral replication in SIV infection. Science. 1998;280(5362):427–31.
Article CAS PubMed Google Scholar
Mattapallil JJ, Douek DC, Hill B, Nishimura Y, Martin M, Roederer M. Massive infection and loss of memory CD4 + T cells in multiple tissues during acute SIV infection. Nature. 2005;434(7037):1093–7.
Article CAS PubMed Google Scholar
Guadalupe M, Reay E, Sankaran S, Prindiville T, Flamm J, McNeil A, et al. Severe CD4 + T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J Virol. 2003;77(21):11708–17.
Article CAS PubMed PubMed Central Google Scholar
Brenchley JM, Douek DC. HIV infection and the gastrointestinal immune system. Mucosal Immunol. 2008;1(1):23–30.
Article CAS PubMed PubMed Central Google Scholar
Costiniuk CT, Angel JB. Human immunodeficiency virus and the gastrointestinal immune system: does highly active antiretroviral therapy restore gut immunity? Mucosal Immunol. 2012;5(6):596–604.
Article CAS PubMed Google Scholar
Chun TW, Nickle DC, Justement JS, Meyers JH, Roby G, Hallahan CW, et al. Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis. 2008;197(5):714–20.
Article CAS PubMed Google Scholar
Yukl SA, Shergill AK, Ho T, Killian M, Girling V, Epling L, et al. The distribution of HIV DNA and RNA in cell subsets differs in gut and blood of HIV-positive patients on ART: implications for viral persistence. J Infect Dis. 2013;208(8):1212–20.
Article CAS PubMed PubMed Central Google Scholar
Dinoso JB, Rabi SA, Blankson JN, Gama L, Mankowski JL, Siliciano RF, et al. A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J Virol. 2009;83(18):9247–57.
Article CAS PubMed PubMed Central Google Scholar
Wong JK, Yukl SA. Tissue reservoirs of HIV. Curr Opin HIV AIDS. 2016;11(4):362–70.
Article CAS PubMed PubMed Central Google Scholar
Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature. 1997;387(6629):183–8.
Article CAS PubMed Google Scholar
Davey RT Jr, Bhat N, Yoder C, Chun TW, Metcalf JA, Dewar R, et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A. 1999;96(26):15109–14.
Article CAS PubMed PubMed Central Google Scholar
Shan L, Deng K, Gao H, Xing S, Capoferri AA, Durand CM, et al. Transcriptional reprogramming during Effector-to-memory transition renders CD4(+) T cells permissive for latent HIV-1 infection. Immunity. 2017;47(4):766–75. e3.
Article CAS PubMed PubMed Central Google Scholar
Eckstein DA, Penn ML, Korin YD, Scripture-Adams DD, Zack JA, Kreisberg JF, et al. HIV-1 actively replicates in naive CD4(+) T cells residing within human lymphoid tissues. Immunity. 2001;15(4):671–82.
Article CAS PubMed Google Scholar
Nishimura Y, Brown CR, Mattapallil JJ, Igarashi T, Buckler-White A, Lafont BA, et al. Resting naive CD4 + T cells are massively infected and eliminated by X4-tropic simian-human immunodeficiency viruses in macaques. Proc Natl Acad Sci U S A. 2005;102(22):8000–5.
Article CAS PubMed PubMed Central Google Scholar
Ostrowski MA, Chun TW, Justement SJ, Motola I, Spinelli MA, Adelsberger J, et al. Both memory and CD45RA+/CD62L + naive CD4(+) T cells are infected in human immunodeficiency virus type 1-infected individuals. J Virol. 1999;73(8):6430–5.
Article CAS PubMed PubMed Central Google Scholar
Wightman F, Solomon A, Khoury G, Green JA, Gray L, Gorry PR, et al. Both CD31(+) and CD31 naive CD4(+) T cells are persistent HIV type 1-infected reservoirs in individuals receiving antiretroviral therapy. J Infect Dis. 2010;202(11):1738–48.
Brenchley JM, Hill BJ, Ambrozak DR, Price DA, Guenaga FJ, Casazza JP, et al. T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis. J Virol. 2004;78(3):1160–8.
Article CAS PubMed PubMed Central Google Scholar
Kinter A, Moorthy A, Jackson R, Fauci AS. Productive HIV infection of resting CD4 + T cells: role of lymphoid tissue microenvironment and effect of immunomodulating agents. AIDS Res Hum Retroviruses. 2003;19(10):847–56.
Article CAS PubMed Google Scholar
Zhang L, Ramratnam B, Tenner-Racz K, He Y, Vesanen M, Lewin S, et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med. 1999;340(21):1605–13.
Article CAS PubMed Google Scholar
Chavez L, Calvanese V, Verdin E. HIV latency is established directly and early in both resting and activated primary CD4 T cells. PLoS Pathog. 2015;11(6):e1004955.
Article PubMed PubMed Central Google Scholar
Shen A, Baker JJ, Scott GL, Davis YP, Ho YY, Siliciano RF. Endothelial cell stimulation overcomes restriction and promotes productive and latent HIV-1 infection of resting CD4 + T cells. J Virol. 2013;87(17):9768–79.
Article CAS PubMed PubMed Central Google Scholar
Morris JH 3rd, Nguyen T, Nwadike A, Geels ML, Kamp DL, Kim BR, et al. Soluble factors secreted by endothelial cells allow for productive and latent HIV-1 infection in resting CD4(+) T cells. AIDS Res Hum Retroviruses. 2017;33(2):110–20.
Article CAS PubMed PubMed Central Google Scholar
Schilthuis M, Verkaik S, Walhof M, Philipose A, Harlow O, Kamp D, et al. Lymphatic endothelial cells promote productive and latent HIV infection in resting CD4 + T cells. Virol J. 2018;15(1):152.
Article CAS PubMed PubMed Central Google Scholar
Choi J, Walker J, Talbert-Slagle K, Wright P, Pober JS, Alexander L. Endothelial cells promote human immunodeficiency virus replication in nondividing memory T cells via Nef-, Vpr-, and T-cell receptor-dependent activation of NFAT. J Virol. 2005;79(17):11194–204.
Article CAS PubMed PubMed Central Google Scholar
Choi J, Walker J, Boichuk S, Kirkiles-Smith N, Torpey N, Pober JS, et al. Human endothelial cells enhance human immunodeficiency virus type 1 replication in CD4 + T cells in a Nef-dependent manner in vitro and in vivo. J Virol. 2005;79(1):264–76.
Article CAS PubMed PubMed Central Google Scholar
Card CM, Abrenica B, McKinnon LR, Ball TB, Su RC. Endothelial cells promote productive HIV infection of resting CD4(+) T cells by an integrin-mediated cell adhesion-dependent mechanism. AIDS Res Hum Retroviruses. 2022;38(2):111–26.
留言 (0)