Regulation of the epigenome through RNA modifications

Abakir A, Giles TC, Cristini A et al (2020) N6-Methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat Genet 52:48–55. https://doi.org/10.1038/s41588-019-0549-x

Article  CAS  PubMed  Google Scholar 

Abou Assi H, Rangadurai AK, Shi H et al (2021) 2′-O-Methylation can increase the abundance and lifetime of alternative RNA conformational states. Nucleic Acids Res 48:12365–12379. https://doi.org/10.1093/nar/gkaa928

Article  CAS  Google Scholar 

Agris PF (2015) The importance of being modified: an unrealized code to RNA structure and function. RNA 21:552–554. https://doi.org/10.1261/rna.050575.115

Akichika S, Hirano S, Shichino Y et al (2019) Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 363:eaav0080. https://doi.org/10.1126/SCIENCE.AAV0080

Amort T, Soulière MF, Wille A et al (2013) Long non-coding RNAs as targets for cytosine methylation. RNA Biol 10:1002–1008. https://doi.org/10.4161/rna.24454

Article  CAS  PubMed Central  Google Scholar 

Arango D, Sturgill D, Alhusaini N et al (2018) Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175:1872-1886.e24. https://doi.org/10.1016/j.cell.2018.10.030

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arango D, Sturgill D, Yang R et al (2022) Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol Cell 82:2797-2814.e11. https://doi.org/10.1016/J.MOLCEL.2022.05.016

Article  CAS  PubMed  Google Scholar 

Athanasiadis A, Rich A, Maas S (2004) Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2:e391. https://doi.org/10.1371/JOURNAL.PBIO.0020391

Auffinger P, Westhof E (2001) Hydrophobic groups stabilize the hydration shell of 2′-O-methylated RNA duplexes. Angewandte Chemie - Int Ed 40:4648–4650. https://doi.org/10.1002/1521-3773(20011217)40:24%3c4648::AID-ANIE4648%3e3.0.CO;2-U

Article  CAS  Google Scholar 

Bahn JH, Lee JH, Li G et al (2012) Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 22:142–150. https://doi.org/10.1101/GR.124107.111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baldini L, Charpentier B, Labialle S (2021) Emerging data on the diversity of molecular mechanisms involving c/d snornas. Noncoding RNA 7:30. https://doi.org/10.3390/ncrna7020030

Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298. https://doi.org/10.1038/nrm.2017.7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barbieri I, Tzelepis K, Pandolfini L et al (2017) Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552:126–131. https://doi.org/10.1038/nature24678

Article  CAS  PubMed  PubMed Central  Google Scholar 

Belotserkovskii BP, Tornaletti S, D’Souza AD, Hanawalt PC (2018) R-loop generation during transcription: formation, processing and cellular outcomes. DNA Repair 71:69–81. https://doi.org/10.1016/j.dnarep.2018.08.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bizhanova A, Kaufman PD (2021) Close to the edge heterochromatin at the nucleolar and nuclear peripheries. Biochim et Biophys Acta BBA Gene Regul Mech 1864:194666. https://doi.org/10.1016/J.BBAGRM.2020.194666

Boccaletto P, Stefaniak F, Ray A et al (2022) MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res 50:D231–D235. https://doi.org/10.1093/NAR/GKAB1083

Article  CAS  PubMed  Google Scholar 

Boeren J, Gribnau J (2021) Xist-mediated chromatin changes that establish silencing of an entire X chromosome in mammals. Curr Opin Cell Biol 70:44–50. https://doi.org/10.1016/j.ceb.2020.11.004

Article  CAS  PubMed  Google Scholar 

Borchardt EK, Martinez NM, Gilbert WV (2020) Regulation and function of RNA pseudouridylation in human cells. Annu Rev Genet 54:309–336. https://doi.org/10.1146/ANNUREV-GENET-112618-043830

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boulias K, Toczydłowska-Socha D, Hawley BR et al (2019) Identification of the m6Am methyltransferase PCIF1 reveals the location and functions of m6Am in the transcriptome. Mol Cell 75:631-643.e8. https://doi.org/10.1016/j.molcel.2019.06.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bratkovič T, Rogelj B (2014) The many faces of small nucleolar RNAs. Biochim Biophys Acta Gene Regul Mech 1839:438–443. https://doi.org/10.1016/j.bbagrm.2014.04.009

Article  CAS  Google Scholar 

Cattenoz PB, Taft RJ, Westhof E, Mattick JS (2013) Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage. RNA 19:257–270. https://doi.org/10.1261/RNA.036202.112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaumeil J, Le Baccon P, Wutz A, Heard E (2006) A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Genes Dev 20:2223–2237. https://doi.org/10.1101/gad.380906

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chelmicki T, Roger E, Teissandier A et al (2021) m6A RNA methylation regulates the fate of endogenous retroviruses. Nature 591:312–316. https://doi.org/10.1038/s41586-020-03135-1

Article  CAS  PubMed  Google Scholar 

Chen X, Li A, Sun BF et al (2019) 5-Methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nature Cell Biol 21:978–990. https://doi.org/10.1038/s41556-019-0361-y

Chen H, Yao J, Bao R et al (2021) Cross-talk of four types of RNA modification writers defines tumor microenvironment and pharmacogenomic landscape in colorectal cancer. Mol Cancer 20:1–21. https://doi.org/10.1186/S12943-021-01322-W

Article  PubMed  PubMed Central  Google Scholar 

Cheng JX, Chen L, Li Y et al (2018) RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat Commun 9:1163. https://doi.org/10.1038/s41467-018-03513-4

Chi YH, Haller K, Peloponese JM, Jeang KT (2007) Histone acetyltransferase hALP and nuclear membrane protein hsSUN1 function in de-condensation of mitotic chromosomes. J Biol Chem 282:27447–27458. https://doi.org/10.1074/jbc.M703098200

Article  CAS  PubMed  Google Scholar 

Chung H, Calis JJA, Wu X et al (2018) Human ADAR1 Prevents Endogenous RNA from Triggering Translational Shutdown. Cell 172:811-824.e14. https://doi.org/10.1016/J.CELL.2017.12.038

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clemson CM, Hutchinson JN, Sara SA et al (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726. https://doi.org/10.1016/j.molcel.2009.01.026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Crick FHC (1966) Codon–anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555. https://doi.org/10.1016/S0022-2836(66)80022-0

Article  CAS  PubMed  Google Scholar 

Dai Q, Zhang LS, Sun HL et al (2022) Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat Biotechnol 41:344-354. https://doi.org/10.1038/s41587-022-01505-w

Davidovich C, Cech TR (2015) The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA 21:2007–2022. https://doi.org/10.1093/nar/23.24.5020

Article  CAS  PubMed  PubMed Central  Google Scholar 

Davis DR (1995) Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res 23:5020–5026. https://doi.org/10.1093/nar/23.24.5020

Delorimier E, Hinman MN, Copperman J et al (2017) Pseudouridine modification inhibits muscleblind-like 1 (MBNL1) binding to CCUG repeats and minimally structured RNA through reduced RNA flexibility. J Biol Chem 292:4350–4357. https://doi.org/10.1074/jbc.M116.770768

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng S, Zhang J, Su J et al (2022) RNA m6A regulates transcription via DNA demethylation and chromatin accessibility. Nat Genet 54:1427–1437. https://doi.org/10.1038/s41588-022-01173-1

Article  CAS  PubMed  Google Scholar 

Dimitrova DG, Teysset L, Carré C (2019) RNA 2’-O-methylation (Nm) modification in human diseases. Genes (Basel) 10:117. https://doi.org/10.3390/GENES10020117

Dominissini D, Rechavi G (2018) N4-acetylation of cytidine in mRNA by NAT10 Regulates Stability and Translation. Cell 175:1725–1727. https://doi.org/10.1016/J.CELL.2018.11.037

Article  CAS  PubMed  Google Scholar 

Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206. https://doi.org/10.1038/NATURE11112

Article  CAS  PubMed  Google Scholar 

Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S et al (2016) The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530:441–446. https://doi.org/10.1038/nature16998

Draycott AS, Schaening-Burgos C, Rojas-Duran MF et al (2022) Transcriptome-wide mapping reveals a diverse dihydrouridine landscape including mRNA. PLoS Biol 20:e3001622. https://doi.org/10.1371/journal.pbio.3001622

Dutta N, Deb I, Sarzynska J, Lahiri A (2022) Inosine and its methyl derivatives: occurrence, biogenesis, and function in RNA. Prog Biophys Mol Biol 169–170:21–52. https://doi.org/10.1016/J.PBIOMOLBIO.2022.01.001

Article  PubMed  Google Scholar 

Engreitz JM, Sirokman K, McDonel P et al (2014) RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell 159:188–199. https://doi.org/10.1016/j.cell.2014.08.018

Article  CAS  PubMed  PubMed Central  Google Scholar 

Enroth C, Poulsen LD, Iversen S et al (2019) Detection of internal N7-methylguanosine (m7G) RNA modifications by mutational profiling sequencing. Nucleic Acids Res 47:E126–E126. https://doi.org/10.1093/nar/gkz736

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feric M, Vaidya N, Harmon TS et al (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–1697. https://doi.org/10.1016/J.CELL.2016.04.047

Article  CAS 

留言 (0)

沒有登入
gif