Method to Generate Complex Predictive Features for Machine Learning-Based Prediction of the Local Structure and Functions of Proteins

Anfinsen C.B. 1973. Principles that govern the folding of protein chains. Science. 181, 223‒230.

Article  CAS  PubMed  Google Scholar 

Yang Y., Gao J., Wang J., Heffernan R., Hanson J., Paliwal K., Zhou Y. 2018. Sixty-five years of the long march in protein secondary structure prediction: the final stretch?, Brief. Bioinform. 19, 482‒494.

CAS  PubMed  Google Scholar 

Zimmermann O., Hansmann U.H. 2008. LOCUSTRA: accurate prediction of local protein structure using a two-layer support vector machine approach. J. Chem. Inf. Model. 48, 1903‒1908.

Article  CAS  PubMed  Google Scholar 

Wuyun Q., Zheng W., Peng Z., Yang J. 2018. A large-scale comparative assessment of methods for residue-residue contact prediction. Brief. Bioinform. 19, 219‒230.

CAS  PubMed  Google Scholar 

Zhang J., Kurgan L. 2018. Review and comparative assessment of sequence-based predictors of protein-binding residues. Brief Bioinform. 19, 821‒837.

Article  PubMed  Google Scholar 

Min S., Lee B., Yoon S. 2017. Deep learning in bioinformatics. Brief. Bioinform. 18, 851‒869.

PubMed  Google Scholar 

Hu H.J., Pan Y., Harrison R., Tai P.C. 2004. Improved protein secondary structure prediction using support vector machine with a new encoding scheme and an advanced tertiary classifier. IEEE Trans. Nanobiosci. 3, 265‒271.

Article  Google Scholar 

Yoo P.D., Sikder A.R., Zhou B.B., Zomaya A.Y. 2008. Improved general regression network for protein domain boundary prediction. BMC Bioinf. 9 (suppl. 1), S12.

Article  Google Scholar 

Miyazawa S., Jernigan R.L. 1999. Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues. Proteins. 34, 49‒68.

Article  CAS  PubMed  Google Scholar 

Lin K., May A.C., Taylor W.R. 2002. Amino acid encoding schemes from protein structure alignments: multi-dimensional vectors to describe residue types. J. Theor. Biol. 216, 361‒365.

Article  CAS  PubMed  Google Scholar 

Asgari E., Mofrad M.R. 2015. Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS One. 10, e0141287.

Article  PubMed  PubMed Central  Google Scholar 

Jing X., Dong Q., Hong D., Lu R. 2020. Amino acid encoding methods for protein sequences: a comprehensive review and assessment. IEEE/ACM Trans. Comput. Biol. Bioinf. 17, 1918‒1931.

Article  CAS  Google Scholar 

Kawashima S., Pokarowski P., Pokarowska M., Kolinski A., Katayama T., Kanehisa M. 2008. AAindex: amino acid index database, progress report 2008. Nucleic Acids Res. 36, D202‒205.

Article  CAS  PubMed  Google Scholar 

Milchevskaya V., Nikitin A.M., Lukshin S.A., Filatov I.V., Kravatsky Y.V., Tumanyan V.G., Esipova N.G., Milchevskiy Y.V. 2021. Structural coordinates: a novel approach to predict protein backbone conformation. PLoS One. 16, e0239793.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Taha K., Yoo P.D. 2015. Predicting protein function from biomedical text. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2015, 3275‒3278.

Dayhoff M.O. 1972. Atlas of protein sequence and structure. Silver Spring, Md.: National Biomedical Research Foundation.

Google Scholar 

de Brevern A.G., Etchebest C., Hazout S. 2000. Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins. 41, 271‒287.

Article  CAS  PubMed  Google Scholar 

Kabsch W., Sander C. 1983. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 22, 2577‒2637.

Article  CAS  PubMed  Google Scholar 

Hocking R.R. 1983. Developments in linear regression methodology: 1959‒1982. Technometrics. 25, 219‒223.

Google Scholar 

Ralston A., Wilf H.S., Enslein K. 1960. Mathematical Methods for Digital Computers. New York: Wiley.

Google Scholar 

Wertz D.H., Scheraga H.A. 1978. Influence of water on protein structure. An analysis of the preferences of amino acid residues for the inside or outside and for specific conformations in a protein molecule. Macromolecules. 11, 9‒15.

Article  CAS  PubMed  Google Scholar 

Wang G., Dunbrack R.L., Jr., 2005. PISCES: recent improvements to a PDB sequence culling server. Nucleic Acids Res. 33, W94‒W98.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuff J.A., Barton G.J. 1999. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins. 34, 508‒519.

Article  CAS  PubMed  Google Scholar 

Rout S.B., Mishra S., Sahoo S.K. 2021. Q3 Accuracy and SOV measure analysis of application of GA in protein secondary structure prediction. Revue d’Intelligence Artificielle. 35, 403‒408.

Article  Google Scholar 

Yang Y., Heffernan R., Paliwal K., Lyons J., Dehzangi A., Sharma A., Wang J., Sattar A., Zhou Y. 2017. SPIDER2: a package to predict secondary structure, accessible surface area, and main-chain torsional angles by deep neural networks. Methods Mol. Biol. 1484, 55‒63.

Article  CAS  PubMed  Google Scholar 

Drozdetskiy A., Cole C., Procter J., Barton G.J. 2015. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 43, W389‒394.

Article  Google Scholar 

Xie S., Li Z., Hu H. 2018. Protein secondary structure prediction based on the fuzzy support vector machine with the hyperplane optimization. Gene. 642, 74‒83.

Article  CAS  PubMed  Google Scholar 

Magnan C.N., Baldi P. 2014. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics. 30, 2592‒2597.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma Y., Liu Y., Cheng J. 2018. Protein secondary structure prediction based on data partition and semi-random subspace method. Sci. Rep. 8, 9856.

Article  PubMed  PubMed Central  Google Scholar 

Guo Z., Hou J., Cheng J. 2021. DNSS2: Improved ab initio protein secondary structure prediction using advanced deep learning architectures. Proteins. 89, 207‒217.

Article  CAS  PubMed  Google Scholar 

Wang S., Peng J., Ma J., Xu J. 2016. Protein secondary structure prediction using deep convolutional neural fields. Sci. Rep. 6, 18962.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang B., Li J., Lu Q. 2018. Prediction of 8-state protein secondary structures by a novel deep learning architecture. BMC Bioinformatics. 19, 293.

Article  PubMed  PubMed Central  Google Scholar 

Krieger S., Kececioglu J. 2020. Boosting the accuracy of protein secondary structure prediction through nearest neighbor search and method hybridization. Bioinformatics. 36, i317‒i325.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif