A Bioinformatics Method for Identification of Human Proteases Active against Viral Envelope Glycoproteins: A Case Study on the SARS-CoV-2 Spike Protein

Ramage H., Cherry S. 2015. Virus–host interactions: From unbiased genetic screens to function. Annu. Rev. Virol. 2, 497–524. https://doi.org/10.1146/annurev-virology-100114-055238

Article  CAS  PubMed  Google Scholar 

Li G., Hilgenfeld R., Whitley R., De Clercq E. 2023. Therapeutic strategies for COVID-19: Progress and lessons learned. Nat. Rev. Drug Discovery. 22, 449–475. https://doi.org/10.1038/s41573-023-00672-y

Article  CAS  PubMed  Google Scholar 

V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. 2021. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170. https://doi.org/10.1038/s41579-020-00468-6

Article  CAS  PubMed  Google Scholar 

Baggen J., Vanstreels E., Jansen S., Daelemans D. 2021. Cellular host factors for SARS-CoV-2 infection. Nat. Microbiol. 6, 1219–1232. https://doi.org/10.1038/s41564-021-00958-0

Article  CAS  PubMed  Google Scholar 

Takeda M. 2022. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol. Immunol. 66, 15–23. https://doi.org/10.1111/1348-0421.12945

Article  CAS  PubMed  Google Scholar 

Jackson C.B., Farzan M., Chen B., Choe H. 2022. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20. https://doi.org/10.1038/s41580-021-00418-x

Article  CAS  PubMed  Google Scholar 

Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D. 2020. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 181, 281‒292.e6. https://doi.org/10.1016/j.cell.2020.02.058

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zabiegala A., Kim Y., Chang K.O. 2023. Roles of host proteases in the entry of SARS-CoV-2. Anim. Dis. 3 (1), 12. https://doi.org/10.1186/s44149-023-00075-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Benton D.J., Wrobel A.G., Xu P., Roustan C., Martin S.R., Rosenthal P.B., Skehel J.J., Gamblin S.J. 2020. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature. 588, 327‒330. https://doi.org/10.1038/s41586-020-2772-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsuyama S., Nao N., Shirato K., Kawase M., Saito S., Takayama I., Nagata N., Sekizuka T., Katoh H., Kato F., Sakata M., Tahara M., Kutsuna S., Ohmagari N., Kuroda M., Suzuki T., Kageyama T., Takeda M. 2020. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. U. S. A. 117, 7001–7003. https://doi.org/10.1073/pnas.2002589117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A., Li F. 2020. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U. S. A. 117, 11727‒11734. https://doi.org/10.1073/pnas.2003138117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Callaway E. 2020. The coronavirus is mutating—does it matter? Nature. 585, 174–177. https://doi.org/10.1038/d41586-020-02544-6

Article  CAS  PubMed  Google Scholar 

Lubinski B., Whittaker G.R. 2023. The SARS-CoV-2 furin cleavage site: Natural selection or smoking gun? Lancet Microbe. 4 (8), e570. https://doi.org/10.1016/S2666-5247(23)00144-1

Article  CAS  PubMed  Google Scholar 

Whittaker G.R. 2021. SARS-CoV-2 spike and its adaptable furin cleavage site. Lancet Microbe. 2 (10), e488–e489. https://doi.org/10.1016/S2666-5247(21)00174-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu Y., Zhao S. 2021. Furin cleavage sites naturally occur in coronaviruses. Stem Cell Res. 50, 102‒115. https://doi.org/10.1016/j.scr.2020.102115

Article  CAS  Google Scholar 

Chan Y.A., Zhan S.H. 2021. The emergence of the spike furin cleavage site in SARS-CoV-2. Mol. Biol. Evol. 39 (1), msab327. https://doi.org/10.1093/molbev/msab327

Whittaker G.R., Daniel S., Millet J.K. 2021. Coronavirus entry: how we arrived at SARS-CoV-2. Curr. Opin. Virol. 47, 113–120. https://doi.org/10.1016/j.coviro.2021.02.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Z., Zheng H., Yuan R., Li M., Lin H., Peng J., Xiong Q., Sun J., Li B., Wu J., Ke C., Hulswit R.J.G., Bowden T.A. Rambaut A., Pybus O.G., Loman N., Lu J. 2020. Identification of common deletions in the spike protein of SARS-CoV-2. J. Virol. 94, e00790-20. https://doi.org/10.1128/JVI.00790-20

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park J.E., Li K., Barlan A., Fehr A.R., Perlman S., McCray P.B., Gallagher T. 2016. Proteolytic processing of middle east respiratory syndrome coronavirus spikes expands virus tropism. Proc. Natl. Acad. Sci. U. S. A. 113, 12262–12267. https://doi.org/10.1073/pnas.1608147113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baggen J., Jacquemyn M., Persoons L., Vanstreels E., Pye V.E., Wrobel A.G., Calvaresi V., Martin S.R., Roustan C., Cronin N.B., Reading E., Thibault H.J., Vercruysse T., Maes P., De Smet F., Yee A., Nivitchanyong T., Roell M., Franco-Hernandez N., Rhinn H., Mamchak A.A. Young-Chapon M.A., Brown E., Cherepanov P., Daelemans D. 2023. TMEM106B is a receptor mediating ACE2-independent SARS-CoV-2 cell entry. Cell. 186, 3427–3442. https://doi.org/10.1016/j.cell.2023.06.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng B., Abdullahi A., Ferreira I.A.T.M., Goonawardane N., Saito A., Kimura I., Yamasoba D., Gerber P.P., Fatihi S., Rathore S., Zepeda S.K., Papa G., Kemp S.A., Ikeda T., Toyoda M., Tan T.S., Kuramochi J., Mitsunaga S., Ueno T., Shirakawa K., Takaori-Kondo A., Brevini T., Mallery D.L., Charles O.J., CITIID-NIHR BioResource COVID-19 Collaboration, Genotype to Phenotype Japan (G2P-Japan) Consortium, Ecuador-COVID19 Consortium, Bowen, J.E., Joshi A., Walls A.C., Jackson L., Martin D., Smith K.G.C., Bradley J., Briggs J.A.G., Choi J., Madissoon E., Meyer K.B., Mlcochova P., Ceron-Gutierrez L., Doffinger R., Teichmann S.A., Fisher A.J., Pizzuto M.S., de Marco A., Corti D., Hosmillo M., Lee J.H., James L.C. Thukral L., Veesler D., Sigal A., Sampaziotis F., Goodfellow I.G., Matheson N.J., Sato K., Gupta R.K. 2022. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 603, 706–714. https://doi.org/10.1038/s41586-022-04474-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rawlings N.D., Barrett A.J., Thomas P.D., Huang X., Bateman A., Finn R.D. 2018. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PA-NTHER database. Nucleic Acids Res. 46, D624–D632. https://doi.org/10.1093/nar/gkx1134

Article  CAS  PubMed  Google Scholar 

Wasserman W.W., Sandelin A. 2004. Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet. 5, 276–287. https://doi.org/10.1038/nrg1315

Article  CAS  PubMed  Google Scholar 

Schechter I., Berger A. 1968. On the active site of proteases. 3. Mapping the active site of papain, specific peptide inhibitors of papain. Biochem. Biophys. Res. Commun. 32, 898–902. https://doi.org/10.1016/0006-291x(68)90326-4

Article  CAS  PubMed  Google Scholar 

Matveev E. V., Safronov V. V., Ponomarev G. V., Kazanov M.D. 2023. Predicting structural susceptibility of proteins to proteolytic processing. Int. J. Mol. Sci. 24, 10761. https://doi.org/10.3390/ijms241310761

Article  CAS  PubMed  PubMed Central  Google Scholar 

Igarashi Y., Eroshkin A., Gramatikova S., Gramatikoff K., Zhang Y., Smith J.W., Osterman A.L., Godzik A. 2007. CutDB: A proteolytic event database. Nucleic Acids Res. 35 (Database issue), D546–D549. https://doi.org/10.1093/nar/gkl813

Article  CAS  PubMed  Google Scholar 

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E., Louppe G. 2011. Scikit-Learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830. https://doi.org/10.48550/arXiv.1201.0490

Article  Google Scholar 

The UniProt Consortium. 2018. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 46, 2699. https://doi.org/10.1093/nar/gky092

Article  CAS  PubMed  Google Scholar 

wwPDB Consortium. 2019. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47, D520–D528. https://doi.org/10.1093/nar/gky949

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., De Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwelde T. 2018. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303. https://doi.org/10.1093/nar/gky427

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann M., Kleine-Weber H., Pöhlmann S.A. 2020. Multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell. 78, 779‒784.e5. https://doi.org/10.1016/j.molcel.2020.04.022

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif