Regulation of Transcription by RNA Polymerase III Promotors in the Norm and Pathology

Yeganeh M., Hernandez N. 2020. RNA polymerase III transcription as a disease factor. Genes Dev. 34, 865‒882.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wolffe A.P. 1991. RNA polymerase III transcription. Curr. Opin. Cell Biol. 3, 461‒466.

Article  CAS  PubMed  Google Scholar 

Walter P., Blobel G. 1982. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature. 299, 691‒698.

Article  CAS  PubMed  Google Scholar 

Brow D.A., Guthrie C. 1988. Spliceosomal RNA U6 is remarkably conserved from yeast to mammals. Nature. 334, 213‒218.

Article  CAS  PubMed  Google Scholar 

Kulaberoglu Y., Malik Y., Borland G., Selman C., Alic N., Tullet J.M.A. 2021. RNA polymerase III, ageing and longevity. Front. Genet. 12, 705122.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshimoto R., Nakayama Y., Yamamoto I., Tanaka S., Kurihara M., Suzuki Y., Kobayashi T., Kozuka-Hata H., Oyama M., Mito M., Iwasaki S., Yamazaki T., Hirose T., Araki K., Nakagawa S. 2022. 4.5SH RNA counteracts deleterious exonization of SINE B1 in mice. Res. Square. https://assets.researchsquare.com/files/rs-1949270/v1_covered.pdf?c= 1664371339.

Yoshimoto R., Nakagawa S. 2023. SINE-derived short noncoding RNAs: Their evolutionary origins, molecular mechanisms, and physiological significance. Front. RNA Res. 1, 1‒7.

Article  Google Scholar 

Kikovska E., Svard S.G., Kirsebom L.A. 2007. Eukaryotic RNase P RNA mediates cleavage in the absence of protein. Proc. Natl. Acad. Sci. U. S. A. 104, 2062‒2067.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horos R., Buscher M., Kleinendorst R., Alleau-me A.M., Tarafder A.K., Schwarzl T., Dziuba D., Tischer C., Zielonka E.M., Adak A., Castello A., Hu-ber W., Sachse C., Hentze M.W. 2019. The small non-coding vault RNA1-1 acts as a riboregulator of autophagy. Cell. 176, 1054‒1067 e1012.

Kheir E., Krude T. 2017. Non-coding Y RNAs associate with early replicating euchromatin in concordance with the origin recognition complex. J. Cell Sci. 130, 1239‒1250.

CAS  PubMed  Google Scholar 

Quaresma A.J., Bugai A., Barboric M. 2016. Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb. Nucleic Acids Res. 44, 7527‒7539.

Article  Google Scholar 

Oler A.J., Alla R.K., Roberts D.N., Wong A., Hollenhorst P.C., Chandler K.J., Cassiday P.A., Nelson C.A., Hagedorn C.H., Graves B.J., Cairns B.R. 2010. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat. Struct. Mol. Biol. 17, 620‒628.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin D., Pestova T.V., Hellen C.U., Tiedge H. 2008. Translational control by a small RNA: Dendritic BC1 RNA targets the eukaryotic initiation factor 4A helicase mechanism. Mol. Cell Biol. 28, 3008‒3019.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ludwig A., Rozhdestvensky T.S., Kuryshev V.Y., Schmitz J., Brosius J. 2005. An unusual primate locus that attracted two independent Alu insertions and facilitates their transcription. J. Mol. Biol. 350, 200‒214.

Article  CAS  PubMed  Google Scholar 

Kramerov D.A., Vassetzky N.S. 2005. Short retroposons in eukaryotic genomes. Int. Rev. Cytol. 247, 165‒221.

Article  CAS  PubMed  Google Scholar 

Kramerov D.A., Vassetzky N.S. 2011. SINEs. Wiley Interdiscip. Rev. RNA. 2, 772‒786.

Article  CAS  PubMed  Google Scholar 

Parrott A.M., Tsai M., Batchu P., Ryan K., Ozer H.L., Tian B., Mathews M.B. 2011. The evolution and expression of the snaR family of small non-coding RNAs. Nucleic Acids Res. 39, 1485‒1500.

Article  CAS  PubMed  Google Scholar 

Kim J., Martignetti J.A., Shen M.R., Brosius J., Deininger P. 1994. Rodent BC1 RNA gene as a master gene for ID element amplification. Proc. Natl. Acad. Sci. U. S. A. 91, 3607‒3611.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gogolevskaya I.K., Kramerov D.A. 2002. Evolutionary history of 4.5SI RNA and indication that it is functional. J. Mol. Evol. 54, 354‒364.

Article  CAS  PubMed  Google Scholar 

Gogolevskaya I.K., Koval A.P., Kramerov D.A. 2005. Evolutionary history of 4.5SH RNA. Mol. Biol. Evol. 22, 1546‒1554.

Article  CAS  PubMed  Google Scholar 

Tatosyan K.A., Koval A.P., Gogolevskaya I.K., Kra-merov D.A. 2017. 4.5SI and 4.5SH RNAs: Expression in various rodent organs and abundance and distribution in the cell. Mol. Biol. (Moscow) 51, 122‒129. https://doi.org/10.1134/S0026893317010174

Article  CAS  Google Scholar 

Arimbasseri A.G., Rijal K., Maraia R.J. 2013. Transcription termination by the eukaryotic RNA polymerase III. Biochim. Biophys. Acta. 1829, 318‒330.

Article  CAS  PubMed  Google Scholar 

Vassetzky N.S., Borodulina O.R., Ustyantsev I.G., Kosushkin S.A., Kramerov D.A. 2021. Analysis of SINE families B2, Dip, and Ves with special reference to polyadenylation signals and transcription terminators. Int. J. Mol. Sci. 22 (18), 9897.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orioli A., Pascali C., Quartararo J., Diebel K.W., Praz V., Romascano D., Percudani R., van Dyk L.F., Hernandez N., Teichmann M., Dieci G. 2011. Widespread occurrence of non-canonical transcription termination by human RNA polymerase III. Nucleic Acids Res. 39, 5499‒5512.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mus E., Hof P.R., Tiedge H. 2007. Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. U. S. A. 104, 10679‒10684.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borck G., Hog F., Dentici M.L., Tan P.L., Sowada N., Medeira A., Gueneau L., Thiele H., Kousi M., Lepri F., Wenzeck L., Blumenthal I., Radicioni A., Schwarzenberg T.L., Mandriani B., Fischetto R., Morris-Rosendahl D.J., Altmuller J., Reymond A., Nurnberg P., Merla G., Dallapiccola B., Katsanis N., Cramer P., Kubisch C. 2015. BRF1 mutations alter RNA polymerase III-dependent transcription and cause neurodevelopmental anomalies. Genome Res. 25, 155‒166.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong Q., Xi S., Liang J., Shi G., Huang Y., Zhang Y., Levy D., Zhong S. 2016. The significance of Brf1 overexpression in human hepatocellular carcinoma. Oncotarget. 7, 6243‒6254.

Article  PubMed  Google Scholar 

Leal J.F., Fominaya J., Cascon A., Guijarro M.V., Blanco-Aparicio C., Lleonart M., Castro M.E., Ramon Y.C.S., Robledo M., Beach D.H., Carnero A. 2008. Cellular senescence bypass screen identifies new putative tumor suppressor genes. Oncogene. 27, 1961‒1970.

Article  CAS  PubMed  Google Scholar 

Lockwood W.W., Chari R., Coe B.P., Thu K.L., Garnis C., Malloff C.A., Campbell J., Williams A.C., Hwang D., Zhu C.Q., Buys T.P., Yee J., English J.C., Macaulay C., Tsao M.S., Gazdar A.F., Minna J.D., Lam S., Lam W.L. 2010. Integrative genomic analyses identify BRF2 as a novel lineage-specific oncogene in lung squamous cell carcinoma. PLoS Med. 7, e1000315.

Article  PubMed  PubMed Central  Google Scholar 

Wambach J.A., Wegner D.J., Patni N., Kircher M., Willing M.C., Baldridge D., Xing C., Agarwal A.K., Vergano S.A.S., Patel C., Grange D.K., Kenney A., Najaf T., Nickerson D.A., Bamshad M.J., Cole F.S., Garg A. 2018. Bi-allelic POLR3A loss-of-function variants cause autosomal-recessive wiedemann-rautenstrauch syndrome. Am. J. Hum. Genet. 103, 968‒975.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Francisco S., Ferreira M., Moura G., Soares A.R., Santos M.A.S. 2020. Does proteostasis get lost in translation? Implications for protein aggregation across the lifespan. Ageing. Res. Rev. 62, 101119.

Article  CAS  PubMed  Google Scholar 

Guzzi N., Bellodi C. 2020. Novel insights into the emerging roles of tRNA-derived fragments in mammalian development. RNA Biol. 17, 1214‒1222.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schramm L., Hernandez N. 2002. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 16, 2593‒2620.

Article  CAS  PubMed  Google Scholar 

Bogenhagen D.F. 1985. The intragenic control region of the Xenopus 5S RNA gene contains two factor A binding domains that must be aligned properly for efficient transcription initiation. J. Biol. Chem. 260, 6466‒6471.

Article  CAS  PubMed  Google Scholar 

Arnold G.J., Kahnt B., Herrenknecht K., Gross H.J. 1987. A variant gene and a pseudogene for human 5S RNA are transcriptionally active in vitro. Gene. 60, 137‒144.

Article  CAS  PubMed  Google Scholar 

Hallenberg C., Frederiksen S. 2001. Effect of mutations in the upstream promoter on the transcription of human 5S rRNA genes. Biochim. Biophys. Acta. 1520, 169‒173.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif