The Structural Features of Skeletal Muscle Titin Aggregates

Tsytlonok M., Craig P.O., Sivertsson E., Serquera D., Perrett S., Best R.B., Wolynes P.G., Itzhaki L.S. 2013. Complex energy landscape of a giant repeat protein. Structure. 21 (11), 1954–1965. https://doi.org/10.1016/j.str.2013.08.028

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian P., Best R.B. 2016. Best structural determinants of misfolding in multidomain proteins. PLoS Comput. B-iol. 12 (5), e1004933. https://doi.org/10.1371/journal.pcbi.1004933

Article  CAS  Google Scholar 

Dobson C.M. 2003. Protein folding and misfolding. Nature. 426 (6968), 884–890. https://doi.org/10.1038/nature02261

Article  CAS  PubMed  Google Scholar 

Rousseau F., Schymkowitz J., Itzhaki L.S. 2012. Implications of 3D domain swapping for protein folding, misfolding and function. Adv. Exp. Med. Biol. 747, 137–152. https://doi.org/10.1007/978-1-4614-3229-6_9

Article  CAS  PubMed  Google Scholar 

Knowles T.P., Vendruscolo M., Dobson C.M. 2014. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15 (6), 384–396. https://doi.org/10.1038/nrm3810

Article  CAS  PubMed  Google Scholar 

Dobson C.M. 2004. Experimental investigation of protein folding and misfolding. Methods. 34 (1), 4–14. https://doi.org/10.1016/j.ymeth.2004.03.002

Article  CAS  PubMed  Google Scholar 

Buxbaum J.N., Linke R.P. 2000. A molecular history of the amyloidosis. J. Mol. Biol. 421 (2–3), 142–159. https://doi.org/10.1016/j.jmb.2012.01.024

Article  CAS  Google Scholar 

Sunde M., Serpell L.C., Bartlam M., Fraser P.E., Pepys M.B., Blake C.C. 1997. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273 (3), 729–739. https://doi.org/10.1006/jmbi.1997.1348

Article  CAS  PubMed  Google Scholar 

Nelson R., Eisenberg D. 2006. Recent atomic models of amyloid fibril structure. Curr. Opin. Struct. Biol. 16 (2), 260–265. https://doi.org/10.1016/j.sbi.2006.03.007

Article  CAS  PubMed  Google Scholar 

Olsen A., Jonsson A., Normark S. 1989. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature. 338, 652–655.https://doi.org/10.1038/338652a0

Article  CAS  PubMed  Google Scholar 

Rçmling U., Bian Z., Hammar M., Sierralta W.D., Normark S. 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia c-oli with respect to open structure and regulation. J. Bacteriol. 180, 722–731. https://doi.org/10.1128/JB.180.3.722-731.1998

Article  Google Scholar 

Otzen D., Nielsen P.H. 2008. We find them here, we find them there: Functional bacterial amyloid. Cell Mol. Life Sci. 65 (6), 910–927. https://doi.org/10.1007/s00018-007-7404-4

Article  CAS  PubMed  Google Scholar 

Claessen D., Rink R., de Jong W., Siebring J., de Vreughd P., Boersma F.G.H., Dijkhuizen L. Wçsten H.A.B. 2003. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev. 17, 1714–1726. https://doi.org/10.1101/gad.264303

Article  CAS  PubMed  PubMed Central  Google Scholar 

Si K., Lindquist S.L., Kandel E.R. 2003. A neuronal isoform of the aplysia CPEB has prion-like properties. Cell. 115, 879–891. https://doi.org/10.1016/s0092-8674(03)01020-1

Article  CAS  PubMed  Google Scholar 

Fowler D.M., Koulov A.V., Alory-Jost C., Marks M.S., Balch W.E., Kelly J.W. 2006. Functional amyloid formation within mammalian tissue. PLoS Biol. 4, 1–8. https://doi.org/10.1371/journal.pbio.0040006

Article  CAS  Google Scholar 

Berson J.F., Theos A.C., Harper D.C., Tenza D., Raposo G., Marks M.S. 2003. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell. Biol. 161, 521–533.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang K., McClure J., Tu A. 1979. Titin: Major myofibrillar components of striated muscle. Proc. Natl. Acad. Sci. U. S. A. 76 (8), 3698–3702. https://doi.org/10.1073/pnas.76.8.3698

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maruyama K., Kimura S., Ohashi K., Kuwano Y. 1981. Connectin, an elastic protein of muscle. Identification of “titin” with connectin. J. Biochem. 89 (3), 701–709. https://doi.org/10.1093/oxfordjournals.jbchem.a133249

Article  CAS  PubMed  Google Scholar 

Guo W., Bharmal S.J., Esbona K., Greaser M.L. 2010. Titin diversity–alternative splicing gone wild. J. Biomed. Biotechnol. 2010, 753675. https://doi.org/10.1155/2010/753675

Kim K., Keller T.C. 3rd. 2002. Smitin, a novel smooth muscle titin-like protein, interacts with myosin filaments in vivo and in vitro. J. Cell. Biol. 156, 101–111. https://doi.org/10.1083/jcb.200107037

Article  CAS  PubMed  PubMed Central  Google Scholar 

Greaser M.L., Warren C.M.,Esbona K., Guo W., Duan Y., Parrish A.M., Krzesinski P.R., Norman H.S., Dunning S., Fitzsimons D.P., Moss R.L. 2008. Mutation that dramatically alters rat titin isoform expression and cardiomyocyte passive tension. J. Mol. Cell. Car-diol. 44 (6), 983–991. https://doi.org/10.1016/j.yjmcc.2008.02.272

Article  CAS  Google Scholar 

Labeit S., Lahmers S., Burkart C., Fong C., McNabb M., Witt S., Witt C., Labeit D., Granzier H. 2006. Expression of distinct classes of titin isoforms in striated and smooth muscles by alternative splicing, and their conserved interaction with filamins. J. Mol. Biol. 362 (4), 664–681. https://doi.org/10.1016/j.jmb.2006.07.077

Article  CAS  PubMed  Google Scholar 

Granzier H.L., Irving T.C. 1995. Passive tension in cardiac muscle: Contribution of collagen, titin, microtubules, and intermediate filaments. Biophys. J. 68 (3), 1027–1044. https://doi.org/10.1016/s0006-3495(95)80278-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linke W. 2008. Sense and stretchability: The role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc. Res. 77 (4), 637–648. https://doi.org/10.1016/j.cardiores.2007.03.029

Article  CAS  PubMed  Google Scholar 

Tskhovrebova L., Trinick J. 2010. Roles of titin in the structure and elasticity of the sarcomere. J. Biomed. Biotechnol. 2010, 612482. https://doi.org/10.1155/2010/612482

Gautel M. 2011. The sarcomeric cytoskeleton: Who picks up the strain? Curr. Opin. Cell Biol. 23 (1), 39–46. https://doi.org/10.1016/j.ceb.2010.12.001

Article  CAS  PubMed  Google Scholar 

Bobylev A.G., Galzitskaya O.V., Fadeev R.S., Bobyleva L.G., Yurshenas D.A., Molochkov N.V., Dovidchenko N.V., Selivanova O.M., Penkov N.V., Podlubnaya Z.A., Vikhlyantsev I.M. 2016. Smooth muscle titin forms in vitro amyloid aggregates. Biosci. Rep. 36 (3), e00334. https://doi.org/10.1042/BSR20160066

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yakupova E.I., Vikhlyantsev I.M., Bobyleva L.G., Penkov N.V., Timchenko A.A., Timchenko M.A., Enin G.A., Khutzian S.S., Selivanova O.M., Bobylev A.G. 2018. Different amyloid aggregation of smooth muscles titin in vitro. J. Biomol. Struct. Dyn. 36 (9), 2237–2248. https://doi.org/10.1080/07391102.2017.1348988

Article  CAS  PubMed  Google Scholar 

Bobylev A.G., Fadeev R.S., Bobyleva L.G., Kobyakova M.I., Shlyapnikov Y.M., Popov D.V., Vikhlyantsev I.M. 2021. Amyloid aggregates of smooth-muscle titin impair cell adhesion. Int. J. Mol. Sci. 22 (9), 4579. https://doi.org/10.3390/ijms22094579

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soteriou A., Gamage M., Trinick J. 1993. A survey of interactions made by the giant protein titin. J. Cell Sci. 104 (Pt 1), 119–123. https://doi.org/10.1242/jcs.104.1.119

Article  CAS  PubMed  Google Scholar 

Trinick J., Knight P., Whiting A. 1984. Purification and properties of native titin. J. Mol. Biol. 180 (2), 331–356. https://doi.org/10.1016/s0022-2836(84)80007-8

Article  CAS  PubMed  Google Scholar 

Vikhlyantsev I.M., Podlubnaya Z.A. 2017. Nuances of electrophoresis study of titin/connectin. Biophys. Rev. 9 (3), 189–199. https://doi.org/10.1007/s12551-017-0266-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fritz J.D., Swartz D.R., Greaser M.L. 1989. Factors affecting polyacrilamide gel electrophoresis and electroblotting of high-molecular-weight myofibrillar proteins. Anal. Biochem. 180 (2), 205–210. https://doi.org/10.1016/0003-2697(89)90116-4

Article  CAS  PubMed  Google Scholar 

Towbin H., Staehelin T., Gordon J. 1989. Immunoblotting in the clinical laboratory. J. Clin. Chem. Clin. Biochem. 27 (8), 495–501.

CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif